Cevap Yaz Önceki Konu Sonraki Konu

Üçgen prizmanın kaç köşesi vardır?

Gösterim: 31959 | Cevap: 4
  • kupun kac kosesi vardir
  • ucgen piramitin kac kosesi vardir
  • ucgen prizmanin koseleri
3
  • 3 Gönderen LeqoLas
Misafir
Cevaplanmış   |    18 Nisan 2010 13:02   |   Mesaj #1   |   
Avatarı yok
Ziyaretçi

Üçgen prizmanın kaç köşesi vardır?

Üçgen prizmada köşe sayısı, üçgen prizma kaç köşelidir?

Üçgen prizmanın kaç köşesi vardır?
En iyi cevap nötrino tarafından gönderildi

Üçgen prizmanın 6 köşesi vardır!

Son düzenleyen nötrino; 1 Mayıs 2014 13:12. Sebep: İç başlık ve soru düzeni!!
LeqoLas
18 Nisan 2010 14:15   |   Mesaj #2   |   
Avatarı yok
Ziyaretçi
  • DİK PRİZMALARIN ALAN ve HACİMLERİ
Alt ve üst tabanları paralel eş şekillerden oluşan cisimlere prizma denir. Yan yüzeyleri taban düzlemine dik olan prizmalara dik prizma adı verilir.


Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir.
[AA'], [BB'], [CC'], [DD']
yanal ayrıtlardır.
Dik prizmalarda yanal ayrıt cismin yüksekliğine eşittir.
Cismin yüksekliğine h dersek
h = |AA'| = |BB'| = |CC'| = |DD'| olur.
Prizmanın Hacmi
Hacim=Taban Alanı x Yükseklik

Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur.
Yanal Alan = Taban çevresi x YükseklikBütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Bütün Alan ise yanal alan ile iki taban alanının toplamıdır.
Tüm Alan = Yanal Alan + 2. Taban Alanı1. Dikdörtgenler Prizması
Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır. Burada hacim, taban alanı olan (a.b) ile yükseklik olan (c) nin çarpımıdır. Alan ise (a.b), (b.c) ve (a.c) yüzey alanlarının ikişer katlarının toplamıdır. Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegeni denir.Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları
|AC'| = |A'C| = |BD'| = |B'D| = e (cisim köşegeni)
|BD| = f (Yüzey köşegeni) olsun. Bu durumda
Hacim = a.b.c
Alan =2(ab+bc+ac)
Alan = 2 (ab + bc + ac)
Cisim Köşegeni: e =Öa2 + b2 + c2
Yüzey Köşegeni: f = Öa2 + b2
2. Kare Prizma
Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur.


Kaynakwh:
Hacim = a2 . hYanal Alan = 4 . a . h
Alan = 4.ah + 2.a2Cisim köşegeni : e = Öa2 + a2 + h2
3. Küp
Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri kare dir.
Hacim = a3
Alan = 6a2
Kübün yüzey köşegenleri birbirine eşittir.
Yüzey köşegeni: f = aÖ2
Cisim köşegeni: e = aÖ3
4. Üçgen Prizmalar
Prizmalar tabanlarının şekline göre isim aldıklarından tabanı üçgen olan prizmalara üçgen prizma denir.
Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir.
a. Eşkenar Üçgen Prizma
Eşkenar üçgen prizmanın tabanları eşkenar üçgendir. Yan yüzeyleri ise üç tane eş dikdörtgenden oluşur.Tabanı eşkenar üçgen olduğundan


Tabanı eşkenar üçgen olduğundan
Taban alanıHacimTaban çevresi 3a olduğundan, yanal alan 3a.h dır.Kaynakwh:
Buradan tüm alanı
Tüm alanb. Dik Üçgen Prizma
Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur.


Tabanı dik üçgen olduğundan
Taban alanı =HacimTaban çevresi a + b + c olduğundan,
Yanal alan = (a + b + c) . h
Tüm Alan = b . c + (a + b + c) . h
5. Silindir
Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır.


Taban alanı= pr2
Hacim= pr2hTaban çevresi 2pr olduğundan yanal alan 2prh olur.
Tüm alan = 2prh+ 2prBir dikdörtgen levha bir kenarı etrafında döndürüldüğünde silindir elde edilir.
6. Düzgün Çokgen Prizmalar
Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar deriz. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir.
  • Dik prizmalarda taban şekli ne olursa olsun, hacmin taban alanı ile yüksekliğin çarpımı ve yanal alanın ise taban çevresi ile yüksekliğin çarpımı olduğunu unutmayalım.
EĞİK PRİZMALAR
1. Eğik Kare Prizma


Tabanı, bir kenarı a olan kareden oluşan prizma bir yöne doğru taban düzlemi ile a açısı yapacak kadar eğilirse eğik kare prizma elde edilir.
Prizmanın yanal ayrıtlarına l dersek,
Prizmanın yüksekliği h =l .sin a olur.
Eğik prizmanın yanal ayrıtlarına dik olacak şekilde oluşan kesitine dik kesit denir. Eğik kare prizmanın iki yan yüzeyi dikdörtgen, diğer iki yan yüzeyi ise paralelkenardır.
Eğik kare prizmanın dik kesitinin bir kenarı taban kenarı a kadar, diğeri ise,
a'=a.sin a kadardır.
Buradan;
Dik Kesit Alanı = Taban Alanı x Sin a
Dik kesit çevresi = 2a +2a.sin aEğik prizmaların yanal alanlarının toplamı
Yanal alan= Dik kesit çevresi x Yanal Ayrıtbağıntısı ile bulunur. Alt ve üst tabanlar ilave edildiğinde tüm alan bulunmuş olur. Bütün prizmalarda olduğu gibi eğik prizmalarda da hacim, taban alanı ile yüksekliğin çarpımı ile bulunur.
Hacim = Taban Alanı x YükseklikAyrıca dik kesit alanı ile yanal ayrıtın çarpımı ile de hacim bulunabilir.
Hacim = Dik Kesit Alanı x Yanal Ayrıt
2. Eğik Silindir
|AA'| = |BB'| = l
Yanal ayrıtı l olan ve taban düzlemi ile a açısı yapan eğik silindirde yükseklik,
h=l.sin a
Dik Kesit Alanı=Taban Alanı x Sin aEğik silindirin yan yüz alanı, dik kesit çevresi ile yanal ayrıtının çarpımıdır. Bütün eğik prizmalarda olduğu gibi eğik silindir de de hacim, dik kesit alanı ile yanal ayrıtın çarpımına eşittir.
Hacim = Taban Alanı x Yükseklik
Hacim = Dik Kesit Alanı x Yanal Ayrıt
Yanal Alan = Dik Kesit Çevresi x Yanal Ayrıt
  • DİK PRİZMALARIN ALAN ve HACİMLERİ
Alt ve üst tabanları paralel eş şekillerden oluşan cisimlere prizma denir. Yan yüzeyleri taban düzlemine dik olan prizmalara dik prizma adı verilir.


Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir.
[AA'], [BB'], [CC'], [DD']
yanal ayrıtlardır.
Dik prizmalarda yanal ayrıt cismin yüksekliğine eşittir.
Cismin yüksekliğine h dersek
h = |AA'| = |BB'| = |CC'| = |DD'| olur.
Prizmanın Hacmi
Hacim=Taban Alanı x Yükseklik

Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur.
Yanal Alan = Taban çevresi x YükseklikBütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Bütün Alan ise yanal alan ile iki taban alanının toplamıdır.
Tüm Alan = Yanal Alan + 2. Taban Alanı1. Dikdörtgenler Prizması
Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır. Burada hacim, taban alanı olan (a.b) ile yükseklik olan (c) nin çarpımıdır. Alan ise (a.b), (b.c) ve (a.c) yüzey alanlarının ikişer katlarının toplamıdır. Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegeni denir.Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları
|AC'| = |A'C| = |BD'| = |B'D| = e (cisim köşegeni)
|BD| = f (Yüzey köşegeni) olsun. Bu durumda
Hacim = a.b.c
Alan =2(ab+bc+ac)
Alan = 2 (ab + bc + ac)
Cisim Köşegeni: e =Öa2 + b2 + c2
Yüzey Köşegeni: f = Öa2 + b2
2. Kare Prizma
Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur.



Hacim = a2 . hYanal Alan = 4 . a . h
Alan = 4.ah + 2.a2Cisim köşegeni : e = Öa2 + a2 + h2
3. Küp
Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri kare dir.
Hacim = a3
Alan = 6a2
Kübün yüzey köşegenleri birbirine eşittir.
Yüzey köşegeni: f = aÖ2
Cisim köşegeni: e = aÖ3
4. Üçgen Prizmalar
Prizmalar tabanlarının şekline göre isim aldıklarından tabanı üçgen olan prizmalara üçgen prizma denir.
Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir.
a. Eşkenar Üçgen Prizma
Eşkenar üçgen prizmanın tabanları eşkenar üçgendir. Yan yüzeyleri ise üç tane eş dikdörtgenden oluşur.Tabanı eşkenar üçgen olduğundan


Tabanı eşkenar üçgen olduğundan
Taban alanıHacimTaban çevresi 3a olduğundan, yanal alan 3a.h dır.
Buradan tüm alanı
Tüm alanb. Dik Üçgen Prizma
Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur.


Tabanı dik üçgen olduğundan
Taban alanı =HacimTaban çevresi a + b + c olduğundan,
Yanal alan = (a + b + c) . h
Tüm Alan = b . c + (a + b + c) . h
5. Silindir
Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır.


Taban alanı= pr2
Hacim= pr2hTaban çevresi 2pr olduğundan yanal alan 2prh olur.
Tüm alan = 2prh+ 2prBir dikdörtgen levha bir kenarı etrafında döndürüldüğünde silindir elde edilir.
6. Düzgün Çokgen Prizmalar
Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar deriz. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir.
  • Dik prizmalarda taban şekli ne olursa olsun, hacmin taban alanı ile yüksekliğin çarpımı ve yanal alanın ise taban çevresi ile yüksekliğin çarpımı olduğunu unutmayalım.
EĞİK PRİZMALAR
1. Eğik Kare Prizma


Tabanı, bir kenarı a olan kareden oluşan prizma bir yöne doğru taban düzlemi ile a açısı yapacak kadar eğilirse eğik kare prizma elde edilir.
Prizmanın yanal ayrıtlarına l dersek,
Prizmanın yüksekliği h =l .sin a olur.
Eğik prizmanın yanal ayrıtlarına dik olacak şekilde oluşan kesitine dik kesit denir. Eğik kare prizmanın iki yan yüzeyi dikdörtgen, diğer iki yan yüzeyi ise paralelkenardır.
Eğik kare prizmanın dik kesitinin bir kenarı taban kenarı a kadar, diğeri ise,
a'=a.sin a kadardır.
Buradan;
Dik Kesit Alanı = Taban Alanı x Sin a
Dik kesit çevresi = 2a +2a.sin aEğik prizmaların yanal alanlarının toplamı
Yanal alan= Dik kesit çevresi x Yanal Ayrıtbağıntısı ile bulunur. Alt ve üst tabanlar ilave edildiğinde tüm alan bulunmuş olur. Bütün prizmalarda olduğu gibi eğik prizmalarda da hacim, taban alanı ile yüksekliğin çarpımı ile bulunur.
Hacim = Taban Alanı x YükseklikAyrıca dik kesit alanı ile yanal ayrıtın çarpımı ile de hacim bulunabilir.
Hacim = Dik Kesit Alanı x Yanal Ayrıt
2. Eğik Silindir
|AA'| = |BB'| = l
Yanal ayrıtı l olan ve taban düzlemi ile a açısı yapan eğik silindirde yükseklik,
h=l.sin a
Dik Kesit Alanı=Taban Alanı x Sin aEğik silindirin yan yüz alanı, dik kesit çevresi ile yanal ayrıtının çarpımıdır. Bütün eğik prizmalarda olduğu gibi eğik silindir de de hacim, dik kesit alanı ile yanal ayrıtın çarpımına eşittir.
Hacim = Taban Alanı x Yükseklik
Hacim = Dik Kesit Alanı x Yanal Ayrıt
Yanal Alan = Dik Kesit Çevresi x Yanal Ayrıt
LrseRia, batuhan06 ve Story01 bu mesajı beğendi.
Misafir
13 Şubat 2011 20:02   |   Mesaj #3   |   
Avatarı yok
Ziyaretçi
Üçgen prizma köşe sayısı kaçtır ?
Suzy
6 Ocak 2013 01:12   |   Mesaj #4   |   
Avatarı yok
Ziyaretçi
Alıntı
Misafir adlı kullanıcıdan alıntı

üçgen prizmanın kaç köşesi vardır

Tabanı dik üçgen olduğundan
Taban alanı =HacimTaban çevresi a + b + c olduğundan,
Yanal alan = (a + b + c) . h
Tüm Alan = b . c + (a + b + c) . h
6 KÖŞESİ VE 9 AYRITI AYRICA 5 YÜZÜ VARDIR
1 Mayıs 2014 13:13   |   Mesaj #5   |   
nötrino - avatarı
SMD SiNiRLi-RUTİNE AYKIRI
Zamanın Ötesi..

5211
6.850 mesaj
Kayıt Tarihi:Üyelik: 02-08-2007
Üçgen prizmanın 6 köşesi vardır!
Cevap Yaz
Hızlı Cevap
İsim:
Mesaj:
Önceki Konu Sonraki Konu

Üçgen prizmanın kaç köşesi vardır? Konusuna Benzer Konular

Üçgen prizmanın alanı nasıl hesaplanır?
Gönderen: Misafir Forum: Cevaplanmış
Cevap: 6
Son Mesaj: 9 Mart 2015 12:43
Altıgenin kaç köşesi vardır?
Gönderen: Misafir Forum: Soru-Cevap
Cevap: 11
Son Mesaj: 18 Nisan 2014 17:13
Koninin kaç köşesi vardır?
Gönderen: Misafir Forum: Cevaplanmış
Cevap: 2
Son Mesaj: 8 Nisan 2014 13:21
Cevap: 5
Son Mesaj: 16 Şubat 2014 11:43
Cevap: 3
Son Mesaj: 20 Mart 2010 22:28
Etiketler:
  • kupun kac kosesi vardir
  • ucgen piramitin kac kosesi vardir
  • ucgen prizmanin koseleri
Sayfa 0.331 saniyede 10 sorgu ile oluşturuldu