PC Görünümü Üye Ol
Forum Ana Sayfa
Matematik > Polinomlar
«Önceki KonuSonraki Konu»
Mystic@L19:05, 18 Şubat 2007 
Polinomlar
MsXLabs.org

A. TANIM
n bir doğal sayı ve a0, a1, a2, ... , an – 1, an birer gerçel sayı olmak üzere,

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn

biçimindeki ifadelere x değişkenine bağlı, gerçel (reel) katsayılı n. dereceden polinom (çok terimli) denir.

B. TEMEL KAVRAMLAR

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn
olmak üzere,

Ü a0, a1, a2, ... , an–1, an in her birine polinomun terimlerinin katsayıları denir.
Ü a0, a1x, a2x2, ... , an–1xn – 1, anxn in her birine polinomun terimleri denir.
Ü Polinomun terimlerinden biri olan a2x2 teriminde x in kuvveti olan 2 ye bu terimin derecesi denir.

Ü Polinomu oluşturan terimler içerisinde derecesi en büyük olan terimin katsayısına polinomun baş katsayısı, bu terimin derecesine de polinomun derecesi denir ve der [p(x)] ile gösterilir.

Ü Değişkene bağlı olmayan terime polinomun sabit terimi denir.

Ü a0 = a1 = a2 = ... = an = an–1 = 0 ise, P(x) polinomuna sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.

Ü a0 ¹ 0 ve a1 = a2 = a3 = ... an – 1 = an = 0 ise, P(x) polinomuna sabit polinom denir. Sabit polinomunun derecesi sıfırdır.



C. ÇOK DEĞİŞKENLİ POLİNOMLAR

P(x, y) = 3xy2 – 2x2y – x + 1
biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun derecesi denir.

D. POLİNOMLARDA EŞİTLİK
Aynı dereceli en az iki polinomun eşit dereceli terimlerinin katsayıları birbirine eşit ise bu polinomlara eşit polinomlar denir.
Ü P(x) polinomunun katsayıları toplamı P(1) dir.
Ü P(x) polinomunda sabit terim P(0) dır.



Ü P(x) polinomunun;
Çift dereceli terimlerinin katsayıları toplamı:

Tek dereceli terimlerinin katsayıları toplamı:


E. POLİNOMLARDA İŞLEMLER


1. Toplama ve Çıkarma
P(x) = anxn + an – 1xn – 1 + an – 2xn – 2 + ...

Q(x) = bnxn + bn – 1xn – 1 + bn – 2xn – 2 + ...
olmak üzere,

P(x) + Q(x) = (an + bn)xn + (an – 1 + bn–1)xn – 1 + ...

P(x) – Q(x) = (an – bn)xn + (an – 1 – bn–1)xn – 1 + ...
olur.

2. Çarpma
İki polinomun çarpımı, birisinin her bir teriminin diğerinin her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimlerin toplamına eşittir.

3. Bölme
der [P(x)] ³ der [Q(x)] ve Q(x) ¹ 0 olmak üzere,

P(x) : Bölünen polinom
Q(x) : Bölen polinom
B(x) : Bölüm polinom
K(x) : Kalan polinomdur.

Ü P(x) = Q(x) . B(x) + K(x)
Ü der [K(x)] < der [Q(x)]
Ü K(x) = 0 ise, P(x) polinomu Q(x) polinomuna tam bölünür.
Ü der [P(x)] = der [Q(x)] + der [B(x)]
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer biçimde yapılır.

Bunun için;
  1. Bölünen ve bölen polinomlar x in azalan kuvvetlerine göre sıralanır.
  2. Bölünen polinom soldan ilk terimi, bölen polinomun ilk terimine bölünür.
  3. Bulunan bu bölüm, bölen polinomun bütün te-rimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek biçimde bölünen polinomun altına yazılır.
  4. Bulunan sonuç, bölünen polinomdan çıkarılır. Fark polinomuna da aynı işlem uygulanır.
  5. Yukarıdaki işlemlere, kalan polinomun derecesi bölen polinomun derecesinden küçük oluncaya kadar devam edilir.
F. KALAN POLİNOMUN BULUNMASI
Kalan polinomu, klasik bölme işlemiyle ya da aşağıdaki 3 yöntemden biri ile bulabiliriz.

1. Bölen Birinci Dereceden İse
Bir polinomun ax + b ile bölümünden kalanı bulmak için, polinomda değişken yerine yazılır.
  • P(x) in x – b ile bölümünden kalan P(b) dir.
  • P(mx + n) nin ax + b ile bölümünden kalan

2. Bölen Çarpanlara Ayrılıyorsa
Bölen çarpanlara ayrılıyorsa, her çarpan sıfıra eşitlenir. Bulunan kökler polinomda yazılarak kalan bulunur.

P(x) polinomunun a(x – b) . (x – c) ye bölümünden kalan mx + n ve bölüm polinom Q(x) ise,

P(x) = a(x – b) . (x – c) . Q(x) + mx + n olur.

P(b) = mb + n ... (1)

P(c) = mc + n ... (2)

(1) eşitliği ile (2) eşitliğinin ortak çözümünden m ve n bulunur.



3. Bölen Çarpanlarına Ayrılamıyorsa
Bölen çarpanlarına ayrılamıyorsa aşağıdaki 2 yöntem sırasıyla uygulanarak kalan polinom bulunur.

1) Bölen polinom sıfıra eşitlenerek en büyük dereceli değişkenin eşiti bulunur.

2) Bulunan ifade bölünen polinomda yazılır.
  • P(x) polinomunun ax2 + bx + c ile bölü-münden kalanı bulmak için P(x) polinomunda x2 yerine yazılır.
4. P(x) Polinomu (ax + b)n İle Tam Bölünüyorsa, (n Î N+)



G. BASİT KESİRLERE AYIRMA
a, b, c, d, e, f A, B birer reel (gerçel) sayı olmak üzere,



eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.


Bulunan bu değer eşitliğin sol yanında A nın paydası atılarak elde edilen
de yazılır.


Aynı işlemler B için de yapılır.



H. DERECE İLE İLGİLİ İŞLEMLER

m > n olmak üzere,
der[P(x)] = m
der[Q(x)] = n olsun.

Buna göre,
  1. der[P(x) ± Q(x)] = m tir.
  2. der[P(x) . Q(x)] = m + n dir.
  3. P(x) in Q(x) ile bölümünden elde edilen bölüm B(x) ise, der[B(x)] = m – n dir.
  4. k Î N+ için der[Pk(x)] = k . m dir.
  5. der[P(kx)] = m, k ¹ 0 dır.
kaynak
Benzer Konular:
Cevap
MaKaLeLe20:05, 18 Şubat 2007 
POLİNOMLAR

Tanım
a0,a1,a2,.....an reel sayılar ve n N olmak &#252;zere , anxn + an – 1xn-1 + an-2xn-2 + ... + a1x + a0 bi&#231;imindeki ifadelere , x’e g&#246;re yazılmış reel katsayılı polinom denir. Anxn teriminde an sayısına katsayı , n’ye de terimin derecesi denir.

En b&#252;y&#252;k dereceli terimin derecesi, polinomun dercesidir. Derece yerine kısaca “der” yazılır. Polinomlar P(x) , Q(x), ... ile g&#246;sterilir.

Reel katsayılı polinomların k&#252;mesi R|x| ile g&#246;sterilir. Katsayıları rasyonel sayılardan oluşan polinoma “rasyonel katsayılı polinom” denir.

Rasyonel katsayılı polinomların k&#252;mesi Q|x| tir. Katsayıları tam sayılardan oluşmuş , “tam katsayılı polinomların k&#252;mesi” de Z|x| tir.

Z|x| Q|x| R|x|


&#214;RNEK

A) X4 + 5X2 – 7X + 6

&#199;&#246;z&#252;m
D&#246;rd&#252;nc&#252; dereceden polinom.


b) x3 + + 4
x3 + + 4 = x3 + 3x-1 + 4 ifadesi polinom değildir. &#199;&#252;nk&#252; –1 &#252;ss&#252; doğal sayı değildir.

c)5x6 + + 1
5x6+ + 1= 5x6 + x1/2 + 1 ifadesi polinom değildir. &#199;&#252;nk&#252; &#252;ss&#252; doğal sayı değildir.


d)2x + 7 Birinci dereceden polinom.


e) x3 + x2 – 7x + 5
&#220;&#231;&#252;nc&#252; dereceden polinom.
SABİT POLİNOM

P(x) = a , (a R) polinomuna sabit polinom denir. Sabit polinomun dercesi sıfırdır.

&#214;rnek

P(x) = 4
Q(x) = Polinomları sabit polinomlardır.
R(x) =

NOT
P(x) = 0 sıfır polinomu sabit polinomdur.
P(x) = 0 = 0 . x0 = 0 . x1 = 0 . x7 = ... yazılabileceğinden sıfır polinomunun dercesi belirsizdir. Bu nedenle sıfır polinomunun derecesi yoktur denir.

&#214;rnek
P(2x – 3) = x4 + 2x2 – x + 5 ise P(1) in değerini bulunuz.
&#214;rnek
P(2x – 3) = 4x2 + 6x + 1 olduğuna g&#246;re P(x) polinomunu bulunuz.

&#199;&#246;z&#252;m
2x – 3 = 1 => x = 2 yazılır.
P(4 – 3) = 16 + 8 – 2 + 5
P(1) = 24 + 3 = 27 bulunur. &#199;&#246;z&#252;m
P(2x - 3) ifadesinden P(x) i elde etmek i&#231;in fonksiyonlarda olduğu gibi x yerine 2x-3 &#252;n tersi yazılır.
P(2x – 3) = 4x2 + 6x + 1
P(x) = 4 ( )2 + 6 ( ) + 1
P(x) = 4 . + 3(x + 3) + 1
P(x) = x2 + 6x + 9 +3x + 9 + 1
P(x) = x2 + 9x + 19 olur.


İKİ DEĞİŞKEN

NOT:
Sitedeki dosyalar &#252;ye olmak i&#231;in &#246;ğrencilerin, &#246;ğretmenlerin g&#246;nderdiği dosyalardan oluşmaktadır. Eğitim ve &#246;ğretim ama&#231;lıdır. Bu dosyaların t&#252;m&#252;n&#252;n edit&#246;rden g&#246;zden ge&#231;irilmesi yoğun bir emek gerektiğinden, g&#246;zden ka&#231;mış olanlar olabilir. Ayrıca bir &#252;yemiz tarafından g&#246;nderilen bir dosyanın telif hakkına tabi olup olmadığını her durumda tespit edemeyebiliriz. B&#246;yle bir durumu fark etmeniz halinde dosyanın siteden kaldırılması i&#231;in dosya adını iletişim sayfamızdan bize iletebilirsiniz. İlgili dosya 48 saat i&#231;erisinde derhal siteden kaldırılır.. Telif haklarına g&#246;sterilen &#246;zen konusunda bize yardımcı olduğunuz i&#231;in teşekk&#252;r ederiz..
Cevap
«Önceki KonuSonraki Konu»
Hızlı Cevap
Kullanıcı Adınız:
Doğrulama
Mesaj:
Tüm Matematik Konuları
Benzer Konular
Polinomlar hakkında bilgi verir misiniz?