PC Görünümü Üye Ol
Forum Ana Sayfa
Matematik > Açı Kenar Bağlantıları
«Önceki KonuSonraki Konu»
Mystic@L18:57, 25 Şubat 2007 
1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür.


ABC üçgeninde m( A ) > m(B ) > m(C)
a > b > c
Terside geçerlidir. Uzun kenarı gören açı kısa kenarı gören açıdan daha büyüktür.

İkizkenar üçgenden de bildiğimiz gibi eşit açıların karşılarındaki kenarlar eşittir.

m( B ) = m( C ) => |AB| = |AC|

m( A ) < m( B ) = m( C ) ise
|BC| < |AB| = |AC| olur.


  • Bir üçgende bir tane geniş açı olabileceğinden geniş açının karşısındaki kenar daima en büyük kenar olur.
2. Bir üçgende herhangi bir kenarın uzunluğu diğer iki kenarın uzunlukları toplamından küçük farkının mutlak değerinden büyüktür.

ABC üçgeninde

lb - c l <a < (b + c)
Diğer kenarlar için de aynı durum geçerlidir.
|a – c| < b < (a + c) ve |a – b| < c < (a + b) olur.



3. Dik, dar ve geniş açılı üçgenlerde kenarlar arasındaki ilişkiler.a. Bir dik üçgende

kenarlar arasında
a2 = b2 + c2 bağıntısı vardır.



b. Dar açılı üçgenb ve c sabit tutulup A açısı küçültülürse a da küçülür.

m( A ) < 90° Û a2 < b2 + c3




c. Geniş açılı üçgen b ve c sabit tutulup A açısı büyütülürse a da büyür.
m( A ) < 90° Û a2 > b2 + c3


4. Çeşitkenar bir üçgende aynı köşeden çizilen yükseklik, açıortay ve kenarortay uzunluklarının sıralanması,


|AH| = ha ; yükseklik

|AN| = nA ; açıortay
|AD| = Va ; kenarortay


ha< nA <Va

5. Çeşitkenar bir üçgende, açı, açıortay, kenarortay ve yükseklik arasındaki sıralama;


ABC üçgeninde a, b, c kenar uzunluklarıdır.

m( A ) > m( B ) > m( C ) olduğuna varsayalım.
Bu durumda üçgende


kenarlar : a > b > c

yükseklikler : ha < hb < hc
Açıortaylar : nA < nB < nC
Kenarortaylar : Va < Vb < Vc

şeklinde sıralanırlar. Yani üçgenin yardımcı elemanları kenarlarının sırasına ters olarak sıralanır.
  • Eşkenar ve ikizkenar üçgen için bu sıralamalar geçerli değildir.
6. Bir kenarları ortak olan içiçe iki üçgenden içtekinin çevresi daha küçük olur.


|BD| + |DC| < |AB| + |AC|
  • ABCD bir dörtgen, a, b, c, d kenar uzunlukları [AC] ve [BD] köşegenlerdir.
ABCD dörtgeninde karşılıklı kenarların uzunlukları toplamı, köşegenlerin uzunlukları toplamından küçüktür.

a + c < |AC| + |BD| ve b + d < |AC| + |BD|

köşegen uzunlukları toplamı çevreden daha büyük ve çevrenin yarısından daha küçük olamaz.
  • İç içe şekillerde içteki şeklin çevresi daha küçük olacağından
|DA| + |AB| + |BC|
toplamı |DE| + |EF| + |FC|
toplamından daha büyüktür.



7. ABC üçgeninin içindeki herhangi bir P noktası için;


|AP| + |BP| + |CP|

toplamı ABC üçgeninin çevresinden büyük, çevresinin yarısından küçük olamaz.


  • Burada ve Çevre değerleri sınır değer değildir.
Kaynak
Benzer Konular:
Cevap
«Önceki KonuSonraki Konu»
Hızlı Cevap
Kullanıcı Adınız:
Doğrulama
Mesaj:
Tüm Matematik Konuları
Benzer Konular
Geniş açı, dar açı ve dik doğru açılara örnekler verebilir misiniz?
Kare ve dikdörtgenin kenar ve açı özellikleri nelerdir?
Skype Sürümleri ve İndirme Bağlantıları
Çokgenlerin açı ve kenar özellikleri nelerdir?
Üçgende açı kenar bağıntıları ile ilgili çözümlü örnek bulabilir misiniz?