Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Sohbet (Flash Chat) Forumda Ara

Tek ve Çift Fonksiyonlar

Bu konu Matematik forumunda Mystic@L tarafından 25 Şubat 2007 (19:36) tarihinde açılmıştır.FacebookFacebook'ta Paylaş
26426 kez görüntülenmiş, 2 cevap yazılmış ve son mesaj 3 Ekim 2012 (15:51) tarihinde gönderilmiştir.
  • Bu konuyu beğendiniz mi?   
Cevap Yaz Yeni Konu Aç
Bu konuyu arkadaşlarınızla paylaşın:    « Önceki Konu | Sonraki Konu »      Yazdırılabilir Sürümü GösterYazdırılabilir Sürümü Göster    AramaBu Konuda Ara  
Eski 25 Şubat 2007, 19:36

Tek ve Çift Fonksiyonlar

#1 (link)
Mystic@L
Ziyaretçi
Mystic@L - avatarı
Tek ve çift fonksiyonlar :
Tanımlı olan tüm x değerleri için f (-x) = -f (x) oluyorsa tek ;
f (-x) = f (x) oluyorsa çift fonksiyon denir.
Diğer bir deyişle
başlangıç noktasına (0,0) göre simetrik fonksiyonlar tek ;
y eksine göre simetrik fonksiyonlar çift fonksiyondur.

Örnek 36: f(x) = sinx +3x -x3 fonksiyonu tek mi çift midir ?
Çözüm : f (-x) = sin (-x) + 3(-x) -(-x)3
= -sinx -3x +x3
= -(sinx +3x -x3)
= -f(x) olduğundan tek fonksiyondur.

Örnek 37: f(x) = x2 + 4 -cosx fonksiyonu tek mi çift midir ?
Çözüm : f(-x) = (-x)2 + 4 -cos(-x)
= x2 + 4 -cosx
= f(x) olduğundan çift fonksiyondur.

Örnek 38: f(x) = x2 + x3 -3 fonksiyonu tek mi çift midir ?
Çözüm : f(-x) = (-x)2 + (-x)3 -3
= x2 - x3 -3 olduğundan ne tek ne de çift fonksiyondur.

Örnek 39: f(x) = 0 fonksiyonu tek mi çift midir ?
Çözüm : f (-x) = f(x) = -f(x) = 0
olduğundan fonksiyon hem tek hem de çifttir.
Diğer bir deyişle f(x)=0 fonksiyonu yani x ekseni
hem başlangıç noktası hem de y eksenine göre simetriktir.

Örnek 40: 2f(x) - x -2 = f(-x) fonksiyonu çift olduğuna göre f (x) fonksiyonunu bulunuz.
Çözüm : Çift fonksiyon olduğundan f(x) = f(-x) olur.
Dolayısıyla 2f(x) - x -2 = f(x) olacağından f(x) = x+2 olur.
Periyodik fonksiyonlar :
Eğer bir f(x) fonksiyonunda f (x) = f (x+t) olacak şekilde bir t gerçek sayısı bulunuyorsa f (x) fonksiyonu periyodiktir.
Buradaki t sayısına da o fonksiyonun periyodu denir.
Diğer bir deyişle periyodu t olan bir fonksiyonda
f(x+t) = f(x) ==> ( x+t ) - x = t olur.

Örnek 41: f (x) = g ( 2x+3 ) ile tanımlı iki periyodik fonksiyondan g (x) fonksiyonunun periyodu 5 ‘ tir. Buna göre f(x) fonksiyonunun periyodu nedir ?
Çözüm : f (x) fonksiyonunun periyoduna t dersek f(x+t) = f(x) olmalıdır.
Dolayısı ile g ( 2x+2t +3) = g( 2x+3) ve
( 2x+2t +3) - ( 2x+3) = 5 olmalıdır
( çünkü g (x) fonksiyonunun periyodu 5 )
buradan t = 5/2 bulunur.
f (x) fonksiyonunun periyodu t ise
f (ax+b) fonksiyonunun periyodu olur.
Buna göre g (x) fonksiyonu için t=5 olduğuna göre
g ( 2x+3) fonksiyonunun periyodu da 5/2 ‘dir de diyebilirdik.
f(x) ve g(x) gibi iki fonksiyonunun periyotları t1 ve t2 ise bu iki fonksiyonun toplam veya farklarının periyotları OKEK(t1 , t2 ) olur. Çarpım veya bölümlerinin periyotları ise bu fonksiyonları toplam veya fark formuna çevirerek bulunur.

Örnek 42 : f(x) fonksiyonunun periyodu 3,
g(x) fonksiyonunun periyodu 4 ise
h(x) = f (3x+5)-g(2x+7) fonksiyonunun periyodu nedir ?
Çözüm : f (3x+5) fonksiyonunun periyodu 3/3 = 1 ve g(2x+7) fonksiyonunun periyodu 4/2 = 2 olduğundan h(x) fonksiyonunun periyodu OKEK(1,2) = 2 olur.
Trigonometrik fonksiyonlardan
sin x ve cos x fonksiyonlarının periyotları 2 ;
tanx ve cotx fonksiyonlarının periyotları ise  ‘dir.

Örnek 43 : f (x) = cos(2x-3) + sin (4x-5) ise f(x) fonksiyonunun periyodu nedir ?
Çözüm : cos(2x-3) fonksiyonunun periyodu ve
sin (4x-5) fonksiyonunun periyodu olduğundan
f (x) fonksiyonunun periyodu ikisinin OKEK’i olan  ‘ dir.

Örnek 44 : f (x) = 6sin5xcos3x -5 fonksiyonunun periyodu nedir ?
Çözüm : Ters dönüşüm formullerinden yararlanarak buluruz.
Dolayısıyla f (x) = 3sin 8x +3sin 2x -5 olacağından ;
sin 8x fonksiyonunun periyodu ve
sin 2x fonksiyonunun periyodu ise olur.
f (x) fonksiyonunun periyodu da OKEK ( olur.

Örnek 45 : f(x) = 3sin25x +2 fonksiyonunun periyodu nedir ?
Çözüm : cos 2x = 1-2sin2x olduğundan
olur.
Bu nedenle olur.
f(x) fonksiyonu da
olacağından periyodu da bulunur.
Sinkax ve coskax fonksiyonlarının periyotları k sayısı çift ise ,
k sayısı tek ise ;
tankax ve cotkax fonksiyonlarının periyotları
k sayısı ne olursa olsun ‘dır.
Buna göre aynı soru k =2 olduğundan bu bilgileri kullanarak ’ dir de diyebiliriz .

Fonksiyonların toplamı,farkı, çarpımı,bölümü :
f (x) ve g (x) fonksiyonları için
h (x) = ( f + g ) (x) = f (x) + g (x) fonksiyonuna toplam fonksiyonu ;
h (x) = ( f - g ) (x) = f (x) - g (x) fonksiyonuna fark fonksiyonu ;
h (x) = ( f . g ) (x) = f (x) . g (x) fonksiyonuna çarpım fonksiyonu ;
h (x) = ( f / g ) (x) = f (x) / g (x) fonksiyonuna bölüm fonksiyonu denir.
Burada dikkat edilmesi gereken noktalardan
birincisi h (x) fonksiyonunun tanım kümesi
f ve g fonksiyonlarının tanım kümelerinin kesişim kümesidir , ikincisi ise fonksiyonlar üzerinde tanımlanan işlemler fonksiyonların görüntü kümeleri üzerinde yapılacaktır.

Örnek 46 : f (x) = 3x+5 fonksiyonu için tanım kümesi A = {-1,1,2,3} ve g (x) = 2x-3 fonksiyonu için tanım kümesi B = {-1,2,3,4} olduğuna göre h (x) = (f+g)(x) fonksiyonunun tanım ve değer kümelerini bulunuz.
Çözüm : Tanım kümesi = A  B = {-1,2,3} olur.
h (x) = (3x+5) + (2x-3) = 5x+2 olduğundan
h (-1) = -3
h ( 2) = 12
h (3) = 17 olur ve değer kümesi de G = {-3,12,17} şeklinde bulunur.

Örnek 47 : f : A  B , f (x) = {(1,2),(2,3),(3,4)} ve
g : C  D , C = {1,2,3} ,g (x) = x+1 olduğuna göre
h (x) = 2f(x)+3g(x) fonksiyonunun değer kümesini bulunuz .
Çözüm : Fonksiyonlar incelendiğinde eşit fonksiyon oldukları görülmektedir. Dolayısı ile h (x) = 5f (x) diye düşünülebilir.
h (1) = 5f (1) = 10 ;
h (2) = 5f (2) = 15
h (3) = 5f (3) = 20 olduğundan değer kümesi ={10,15,20} olarak bulunur.
Rapor Et
Reklam
Eski 25 Mayıs 2011, 11:48

Tek ve Çift Fonksiyonlar

#2 (link)
ener
Ziyaretçi
ener - avatarı
Morpa Genel Kültür Ansiklopedisi & MsXLabs

Çift Fonksiyon

Kartezyen koordinatlarda grafiği düşey eksene göre simetrik olan fonksiyon. f(x) bir çift fonksiyonsa, her x için aldığı değeri -x için de alır, yani f(-x) = f(x) tir. Örneğin f(x) = x2 fonksiyonu için sözgelimi f(-3) = f(3) = 9 ve f(-8) = f = 64'tür.
Rapor Et
Eski 3 Ekim 2012, 15:51

Cvp: Tek ve Çift Fonksiyonlar

#3 (link)
MsXTeam
_Yağmur_ - avatarı
TEK FONKSİYON

X bir gerçel sayı olmak üzere, her x için ,f (-x)=-f(x) eşitliğinin geçerli olduğu fonksiyon. Örneğin f(x)= sinx ve f(x)=x3, birer tek fonksiyondur. Tek fonksiyonların grafiği orijine göre simetriktir.


MsXLabs.Org & Morpa Genel Kültür Ansiklopedisi
Rapor Et
Cevap Yaz Yeni Konu Aç
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.145 saniyede (69.32% PHP - 30.68% MySQL) 16 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +3 - Saat: 10:05
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi