Masaüstü Görünümü Üye Ol
Forum Ana Sayfa
Matematik > Ki-kare Dağılımı
«Önceki KonuSonraki Konu»
HipHopRocK18:44, 13 Mart 2009 
Ki-kare Dağılımı


Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım (χ2 dağılımı) özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.
Bu dağılım, gamma dağılımından elde edilir.
x, λ ve n parametreleri ile gamma dağılımına sahip olsun:

f35a08ce1d52d9b2ca49f75f206226a9

olur.
Burada λ = 2 ve n = ν / 2 alınırsa, elde edilen yeni dağılıma, ν serbestlik derecesiyle ki-kare

dağılımı denir ve 4affc9c74501a2f1a8bc82c557b051f4 ile gösterilir.
x, ν serbestlik derecesiyle ki-kare dağılımına sahip ise:
ki-kare 1 n(0.1)'e eşittir

67eebf0e8594d253591cca19c4377a55

olur.

Teorem 1


935657d01c89c0fd9e8829d901b69ca4 ise 7de778102ce8e9f52d16865995d55645 olur.

Teorem 2

d4870ca1399b0960f2b9a9c448701c04 rassal değişkenler N(0,1) dağılımına sahip olsun.

7aa4df7d31b6221aba8271d6c83c520f ise de9a90d38d49061bf0f5e1eaefddf443 olur.

Teorem 3
σ2 varyansı bilinen, N(μ,σ2) dağılımına sahip rasgele örneklem d4870ca1399b0960f2b9a9c448701c04 ve s2 örneklem varyansı olmak üzere:

8a78e43586214e4d911fd443389baa74 olur.

Ki-kare dağılım için olasılık yoğunluk fonksiyonu şu olur:

bf38887f7d409425ebcdf9e1a0bcc434

Burada Γ bir Gamma fonksiyonu bulunduğunu gösterir ve bu yarım-tamsayılar için özel değerler gösterir.

Yığmalı dağılım fonksiyonu

Ki-kare dağılımının yığmalı dağılım fonksiyonu şudur:

ce27f2b887b29201ae8e4c4d86aa0da3

burada γ(k,z) aşağı kısmı tamamlanmamış Gamma fonksiyonu ve P(k,z) ise tanzim edilmiş Gamma fonksiyonu olur.
Ki-karenin için verilen tablolar (biri aşağıda verilmiştir) yığmalı dağılim fonksiyonundan elde edilmektedir. Bu tablolar birçok değişik kaynaklardan bulunabilir. Örneğin bu fonksiyon için tablolar spreadsheet ve istatistik program paketlerinde bulunmaktadır.

Karakteristik fonksiyonu
Ki-kare dağılımının karakteristik fonksiyonu şöyle yazılır:

1dd659d8838578914432d1a77f0ca820

Özellikleri

Normal yaklaşım

Eğer 9c2164202534f2b40307c3eae12bf48d ise, limitte k sonsuzluğa yaklaştıkca X normal dağılıma yaklaşır. Ancak bu

eğilim (çarpıklık 71da431197351c47fd485a6edee4f8fb ve basıklık fazlalığı 12 / k olduğundan dolayı) yavaş gelişmektedir. Ki-kare dağılımının iki değişik dönüşüm fonksiyonu normalliğe çok daha hızla yaklaşma göstermektedir:
Fisher isbat etmiştir ki 9273635040991fcc9f79f6d882915ed6 ifadesi, yaklaşık olarak ortalaması b9b0c4c6371f84a6a97bb3b993c9b4e7 olan ve varyans değeri 1 olan bir normal dağılım gösterir.
Aynı normal yaklaşım sonucuna moment karşılastırması yapılarak da erişilebilir. Bunu görmek

için ki-dağılım gösteren rassal değişken e0d79b8e11a19bf21eca603578ed7e53in ortalaması ve varyansı izlensin. Bunlar
sırasıyla şöyle verilir:

5f174c75cfe93c24f98dbd2fd44b439b

ve

fd58ad1ad2236e9341bde2f6db50b7a5 Burada 11ee491fb6e261ad0b4f721d59ea7318 bir Gamma fonksiyonudur. μz ifadeli gamma fonksiyonunun özel

oranı (particular ratio) şu seri halinde açılabilir :

51ab2d6d49189f7e4edf750f411558f7

350e1622be265583f8005f3a0a433731 olduğu halde bu oran için şöyle yaklaşım bulunur:

93291550bf3415fc18ab114beb277b1b

Sonra basitleşen moment karşılaştırılmasi sonuçları şu yaklaşık z dağılımı verirler;

5483fabf4496509925ba6b4f443d97dd, Bundan da şu ifade hemen çıkartılabilir\:

9e8cc20f41a8bef62d85c4129324df41.
Wilson ve Hilferty [1931] göstermiştir ki ccfd20697974afc563a4a0c8c9362a38 ifadesi, ortalaması 1 − 2 / (9k) ve varyansı 2 / (9k) olan bir normal dağılıma yaklaşıktır.
k serbestlik derecesi olan bir ki-kare dağılımı gösteren bir rassal değişken için beklenen değer k olur. Aynı dağılımın medyan değeri yaklaşık olarak şu ifade ile verilir:

3a157f03a30ff76fd9fe4b20cbe27dfc Eğer serbestlik derecesi 2 ise üstel dağılım ile aynı dağılımdır.

Enformasyon entropisi

Enformasyon entropisi ifadesi şöyle verilir:

32ef86a6f3421ac89534432f9a93dfd6
Burada ψ(x) bir Digamma fonksiyonudur.

İlişkili dağılımlar
97604542a60c97b249c01871040f3100 olur; burada fedd49eca20bcd439a668f155709a951 dir.



Çeşitli ki ve ki-kare dağılımları İsim İstatistik Ki-kare dağılımı cccebc4ae03f764b4d748d541e2e7a21 Merkezsel

olmayan ki-kare dağılımı cf5a4179baaaab60a26a30aac6e1e93e Ki dağılımı d6624a2515a015566e49fe5120945a6e Merkezsel olmayan ki

dağılımı e0a313a5b45e33f7fa6397496e7b17b6

Ki kare kritik değerler tablosu

g serbestlik derecesi için yukarı kuyruk alanının (olasılığın) α olmasına karşıt olan ki2 kritik değeri


Kod:
+-----+-----------------------------------------------------------------------+
| \  α|                                                                       |
|  \  | 0.995  0.91   0.925  0.95   0.90   0.10   0.05   0.025  0.01   0.005  |
|g  \ |                                                                       |
+-----+-----------------------------------------------------------------------+
|  1  |  0.00   0.00   0.00   0.00   0.02   2.71   3.84   5.02   6.63   7.88  |
|  2  |  0.01   0.02   0.05   0.10   0.21   4.61   5.99   7.38   9.21  10.60  |
|  3  |  0.07   0.11   0.22   0.35   0.58   6.25   7.81   9.35  11.34  12.84  |
|  4  |  0.21   0.30   0.48   0.71   1.06   7.78   9.49  11.14  13.28  14.86  |
|  5  |  0.41   0.55   0.83   1.15   1.61   9.24  11.07  12.83  15.09  16.75  |
|  6  |  0.68   0.87   1.24   1.64   2.20  10.64  12.59  14.45  16.81  18.55  |
|  7  |  0.99   1.24   1.69   2.17   2.83  12.02  14.07  16.01  18.48  20.28  |
|  8  |  1.34   1.65   2.18   2.73   3.49  13.36  15.51  17.53  20.09  21.95  |
|  9  |  1.73   2.09   2.70   3.33   4.17  14.68  16.92  19.02  21.67  23.59  |
| 10  |  2.16   2.56   3.25   3.94   4.87  15.99  18.31  20.48  23.21  25.19  |
| 11  |  2.60   3.05   3.82   4.57   5.58  17.28  19.68  21.92  24.72  26.76  |
| 12  |  3.07   3.57   4.40   5.23   6.30  18.55  21.03  23.34  26.22  28.30  |
| 13  |  3.57   4.11   5.01   5.89   7.04  19.81  22.36  24.74  27.69  29.82  |
| 14  |  4.07   4.66   5.63   6.57   7.79  21.06  23.68  26.12  29.14  31.32  |
| 15  |  4.60   5.23   6.26   7.26   8.55  22.31  25.00  27.49  30.58  32.80  |
| 16  |  5.14   5.81   6.91   7.96   9.31  23.54  26.30  28.85  32.00  34.27  |
| 17  |  5.70   6.41   7.56   8.67  10.09  24.77  27.59  30.19  33.41  35.72  |
| 18  |  6.26   7.01   8.23   9.39  10.86  25.99  28.87  31.53  34.81  37.16  |
| 19  |  6.84   7.63   8.91  10.12  11.65  27.20  30.14  32.85  36.19  38.58  |
| 20  |  7.43   8.26   9.59  10.85  12.44  28.41  31.41  34.17  37.57  40.00  |
| 21  |  8.03   8.90  10.28  11.59  13.24  29.62  32.67  35.48  38.93  41.40  |
| 22  |  8.64   9.54  10.98  12.34  14.04  30.81  33.92  36.78  40.29  42.80  |
| 23  |  9.26  10.20  11.69  13.09  14.85  32.01  35.17  38.08  41.64  44.18  |
| 24  |  9.89  10.86  12.40  13.85  15.66  33.20  36.42  39.36  42.98  45.56  |
| 25  | 10.52  11.52  13.12  14.61  16.47  34.38  37.65  40.65  44.31  46.93  |
| 26  | 11.16  12.20  13.84  15.38  17.29  35.56  38.89  41.92  45.64  48.29  |
| 27  | 11.81  12.88  14.57  16.15  18.11  36.74  40.11  43.19  46.96  49.64  |
| 28  | 12.46  13.56  15.31  16.93  18.94  37.92  41.34  44.46  48.28  50.99  |
| 29  | 13.12  14.26  16.05  17.71  19.77  39.09  42.56  45.72  49.59  52.34  |
| 30  | 13.79  14.95  16.79  18.49  20.60  40.26  43.77  46.98  50.89  53.67  |
+-----+-----------------------------------------------------------------------+
Kaynak: Kritik değerler Italyanca Wikipedia için R (software) serbest programının qchisq( ,1:30) fonksiyonu kullanılarak bulunmuştur.
Serbestlik derecesi g>30 olursa kritik değerleri bulmak için şu ifadeyi kullanmak yeterli olacaktır.
χ²α,g = 1/2 ( zα + √(2g-1) )² Burada zα Standart Normal N(0,1) için kritik değerdir (örneğin z0,95 = 1,645 olur.)

Kaynak

Cevap
«Önceki KonuSonraki Konu»
Tüm Matematik Konuları
Benzer Konular
Tam Kare
Kare ve Dikdörtgen
25. Kare Tekniği
T Dağılımı (Student'in T Dağılımı)
F Dağılımı