MsXLabs
Sayfa 1 / 4

MsXLabs (https://www.msxlabs.org/forum/)
-   Soru-Cevap (https://www.msxlabs.org/forum/soru-cevap/)
-   -   Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz? (https://www.msxlabs.org/forum/soru-cevap/342344-eski-uygarliklarin-sayi-ve-sayma-sistemleri-hakkinda-bilgi-verir-misiniz.html)

Misafir 15 Aralık 2010 21:46

eski uygarlıkların kullandıkları sayı sistemlerinin araştırılması ve yaşamda sayılar olmadan ne gibi zorluklar olacağını belirtiniz günümüzde kullandığımız onluk sayı sistemini kim buldu kimler tarafından geliştiği nerede kullanıldığı


Misafir 20 Mart 2011 09:45

eski sayılar
 
lütfen


gizem8hilal 4 Nisan 2011 14:48

İlkçağ insanı (ilkel insan, mağara insanı), rakam ve sayıları kullanmak ihtiyacını duymuştur. Bu devir insanları, ihtiyaçlarını kaydedip saklamasını da biliyordu. Avladıkları hayvanların veya sürüsündeki koyunların sayılarını belirtmek için, yaşadıkları mağara duvarlarına çizikler çizmişler, bir ağaç dalına çentikler yapmışlardır. Bazen de, ipe düğüm atmışlar, veya çakıl taşlarını kullanmışlardır .
Bu devrin, 13-15 yaşındaki insanı, koyun ve geyik gibi varlıkları, ok gibi eşyaları sayabilmek için, ufak yuvarlak çakıl taşlarına sahip olması, veya kesilmiş bir ağaç dalı (sopa) üzerine çentik yapması icap edecekti. Bir taş veya sopa Üzerinde işaretlenmiş bir adet çentik, tek koyunu ifade ederdi. Belli bir zaman sonra, eğer her bir taş veya çentik için bir koyun yoksa, o insan bir veya birkaç koyunun kayıp olduğunu anlardı. Bu devrin insanları; sayıları bir yere kaydedip saklanmasını da biliyorlardı.
İlkçağ insanları, sayılar için kil tabletler üzerine çizikler kazmayı, veya kesilmiş ağaç dalına çentikler yapmaya başlamakla, ilk defa, sayıları yazılı olarak ifade etmiş oluyorlardı. İlkçağ insanının kullandığı bu işaretler, rakam ve sayıların ilk yazılı ifadeleridir.
Bunların yanında; ilkel insanlar, sayıları belirtmek için, değişik ses ve kelimeler de kullanmışlardır. Bugün sayıları belirten standart hale gelmiş sembol (şekil) ve sözcükler vardır. Günümüzde; sayılar, hem 1, 2, 3, … gibi sembollerle ve hem de; bir, iki, üç, … gibi kelimelerle ifade edilmektedir. Bugün dört adet kalemi, “dört kalem” kelimesi ile belirtip “4″ sembolü ile gösterebiliyoruz.
Bilinen en eski sayma sistemlerinden biri, Eski Mısırlılara ait olanıdır. Eski Mısırlıların kullandıkları resim yazısının (hiyeroglif) başlangıç tarihi, M.Ö. 3300 yılına kadar geri gider. Eski Mısırlılara ait sayma sistemi, ilkçağ mağara, insanının önceleri kullandığı sayma sisteminin gelişmiş şeklidir.
Eski Mısır aritmetiği hakkındaki bilgilerimiz, papirüs tomarlarından elde edilmektedir. Bugün bu papirüsler; bilim tarihinde, M.Ö. 1900-1800 yılları için adlandırılan, Kahun ve Berlin papirüsleri ile, M.Ö. 1700 ile 1600 yılları için adlandırılan Hiksoslar Devrinden M.Ö. 1788-1580 kalma Rhind ve Moskova matematik papirüsleridir. Mısır matematiği hakkındaki diğer kaynaklar, birkaç parşömen tomarı ile kil ve tahta tabletlere dayanmaktadır.
Eski Mısır’da rakam ve sayılar bazı sembollerin (şekillerin) yan yana gelmesiyle ortaya çıkıyordu. Bütün rakamlar, 7 değişik şeklin bir araya gelmesiyle ve yazım biçimi de, sağdan sola doğru ifade ediliyordu
Bugün Kullanılan sembollerle ifade
Sayıları da, bu sembollerle göstererek bir sayı sistemi geliştirmişlerdir. Eski Mısırlıların, 1 den 1.000.000 a kadar olan sayıları göstermek ve yazmak için kullandıkları semboller (şekiller) yukarıda gösterilmiştir.
Tablonun incelenmesinden anlaşılacağı gibi, 9 sayısını ifade etmek için, 9 ayrı şekil, 90 sayısını ifade edebilmek için, 9 adet başka bir şekil; 99 için 18 aynı şekil, 999 sayısı için ise, 27 ayrı şekil (sembol) kullanmak gerekli olmaktadır.
Eski Mısırlılar; bu sembolleri, gerektiğinde tahta, ağaç ve taş üzerine de oymuşlardır. Bu rakamları bir kaç kez kullanarak, istenilen sayıları göstermişlerdir. Bu sistemde; gruplamalar onarlık yapıldığından, sistem onluk sistemdir.
Eski Mısır sistemi, aşağıdaki belirtilen özelliklerinden dolayı, mağara insanının kullandığı sistemin geliştirilmiş şekli idi:
a) Bir kümede bulunan şeylerin toplam sayısı, sadece bir tek sembolle belirtilmiştir. Örneğin: 10 sayısının bir topuk kemiği sembolü ile belirtilmesi gibi.
b) Diğer sayıları göstermek için, aynı semboller tekrarlanmıştır.
c) Bu sistemde 10 luk gruplar esas alınmıştır. On düşey çizgi, bir topuk kemiği sembolünü, on topuk kemiği sembolü de, bir çengel sembolüne eş değerdir. Bu şekilde devam eder. Konu hakkında bir fikir vermesi bakımından aşağıdaki tabloda on tabanlı sayıların, eski Mısır sayma düzeninde nasıl yapıldığı gösterilmiştir.Eski Mısırlılar sıfır kavramını da bilmiyorlardı ve sıfırı gösterecek bir işaret (sembol) kullanmamışlardı. Fakat sayıları, çarpma ve çıkarma tablolarına, ehramların yapılış tarihlerinden itibaren sahip bulunuyorlardı.
Mezopotamyalılarda rakamlar, çivi yazısında görülen çivi yada oduncu kamasına benzeyen şekillerden ibarettir.
Bu işaretlerin (sembollerin) uygun biçimde, yan yana veya büyük sayıları gösterebilmek için toplu olarak veya tekrarlayarak grup halinde yazmak suretiyle 60′a kadar sayıları ifade edebiliyorlardı.
Bu tür yazım şeklinde, 0.1 ve 0.01 ile 0.001 gibi rakamların arasındaki farkı anlamak bir hayli güçtü. Bunu anlayabilmek için; metin, konu ve karine yardımıyla sonuç çıkarma yollarına gidilirdi.
Mezopotamyalılar da, sıfır sembolünü kullanmamışlardır. Ancak astronomilerinde bu maksatla, özel bir sembol kullandıkları anlaşılmaktadır.

Roma rakamlarına dayalı, Roma sayma düzenine göre, toplama ve çıkarma işlemlerinin yapılmasında, bazı temel özellik ve sınırlamalar vardır. Bunları özetlersek :
A -Toplama İşlemindeki Özellik ve Sınırlamalar
a) Yanyana yazılan ve aynı sembolü gösteren, iki ya da üç temel rakam birbiriyle toplanarak, toplama karşı gelen sayı elde edilir .
Örnek :
I I I = 1 + 1 + 1 = 3
X X = 10 + 10 = 20
Uyarı : Bu rakamların yazılışları ile ilgili önemli özellik : I, X, C sembolleri yanyana, 3′ten fazla; V, L, D, M sembolleri de, 1′den fazla yazılamaz.
b) Büyük rakamların sağına yazılan küçük rakamlar, kendisi ile toplanarak toplama karşı gelen sayı elde edlir.
Örnek :
XV = 10 + 5 = 15
DLXI = 500 + 50 + 10 + 1 = 561
C) Küçük değerleri gösteren semboller (rakamlar), büyük değerleri gösteren sembollerin sağına yağıldığında, bu değerler toplanarak toplama karşı kelen sayı elde edilir.
Örnek :
MDCLXVI = 1000 + 500 + 100 + 50 + 10 + 5 + 1 = 1666
DLXI = 500 + 50 + 10 + 1 = 561
B -Çıkarma İşleminde Özellik ve Sınırlamalar
a) 5 ile başlayan V, L, D sembolleri, çıkarma amacı ile, kendinden büyük değer belirten sembollerin soluna yazılmaz.
b) Bir sayı, ancak aşağıdaki durumlarda çıkarılabilir.
I sadece V ve X den çıkarılabilir.
X sadece L ve C den çıkarılabilir.
C sadece D ve M den çıkarılabilir.
c) Küçük değerli semboller, büyük değerli sembollerin, soluna yazıldığında, büyük değerden küçüğü çıkarılır, bu fark sayıyı verir
Örnek :
IX = 10 -1 = 9
XL = 50 -10 = 40
d) İki büyük değerli sembol (rakam) arasına yazılan küçük değerli sembol, sağındakinden çıkarılmak suretiyle, sonuca denk gelen sayı elde edilir.
Örnek :
CXL = 140
LIX = 59
d) Roma sembollerinin değer bir özelliği de, binleri göstermek için sembolün üzerine bir yatay çizgi, milyonları göstermek için de; ilgili sembolün üzerine iki yatay çizgi çizilerek ifade edilir.
Görülüyor ki; Roma sayma düzeni, sadece toplama ve çıkarma işlemine dayanmaktadır. Sıfır ve basamak sistemi (kavramı) yoktur. Bu nedenle, aritmetik işlem yapmaya uygun değildir. Şöyle ki : Roma’da Forum Meydanı’ndaki süslü hitabet kürsüsünün “Columna Restrata” sütünunda 2.200.000 sayısını belirtmek için yirmi iki adet “yüz bin” i gösteren sembol (sayı işareti) oyulmuştur.
Roma rakamları bu özellikleri dolayısıyla; bugün matematik işlemleri yapmak amacıyla kullanılmamaktadır. Ancak, çok sınırlı olan, bazı özel gösterimler için kullanılmaktadır.


Arkadaşlar resimlerde vardı...=)


gizem8hilal 4 Nisan 2011 14:50

Eski Mısırlılara ait sayılar yeni sisteme göre hazırlanan 6. snıf matematik kitabının sayılar bölümünde mevcuttur.
Roma rakamlarını zaten heryerde bulabilirsin.
Sümer sayı sistemi altmışlık’tır. , yani “60’ı baz alır”. Sayma 1’den 60’a kadardır., tıpkı bizim bugün 1’den 100’e kadar saymamız gibi. Ama bizim “iki yüz” dediğimiz yerde, Sümerliler “2 geş” derdi ya da yazardı; bu , 120’ye denk gelen 2 x 60 anlamına geliyordu. Hesaplamalarında metin “yarısını al” ya da “üçte birini al” dediğinizde, bunun anlamı 60’ın yarısı = 30, 60’ın üçte biri = 20’dir. Ellerimizin parmaklarını saymaya alıştırılıp ondalık (“10 kez”) sistemle yetiştirilen bizler için bu, alışılmadık ve karmaşık görünebilir ama matematikçiler için altmışlık sistem bir keyiftir.
—————-
10 sayısı pek az tam sayıyla (2 ve 5 ile) bölünebilir. 100 rakamı ise sadece 2,4,5,10,20,25 ve 50 ‘ye tam bölünebilir. Ama 60 sayısı 2,3,4,5,6,10,12,15,20 ve 30’a bölünebilir. Gün içindeki saatleri sayışımızda Sümerlilerin 12’sini, zamanı sayışımızda Sümerlilerin 60’ını (bir dakika 60 saniye, bir saat 60 dakika) ve geometride Sümerlilerin 360’ını (bir dairede 360 derece olması) kullanmamızdan da anlaşıldığı gibi, altmışlık sistem göksel bilimlerde, zamanı hesaplamada ve (bir üçgenin açılarının toplamının 180 derece ve bir karenin açılarının toplamının 360 derece olduğu) geometride hala tek mükemmel sistemdir. Hem teorik hem de uygulamalı geometride bu sistem, çeşitli ve karmaşık bölgeleri, her türden fıçının hacmini, kanalların uzunluğunu veya gezegenler arasındaki uzaklığı hesaplamayı mümkün kılmaktadır.
—————-
“Altmışlık” adı verilmiş olmasına rağmen Sümerlilerin sayı ve matematik sistemi aslında sadece 60 sayısına değil, 6 ve 10’un bileşimine dayanmaktaydı. Ondalık sistemde her bir üst basamak, bir önceki toplamı 10 ile çarparak elde edilirken , Sümer sisteminde sayılar altmışlık çarpımlarla arttırılıyordu; bir kez 10 ile, bir kez 6 ile , sonra 10 ile, sonra tekrar 6 ile… Bu metot günümüz bilginlerini pek şaşırtmaktadır. Ondalık sistemin insanın el parmaklarının sayısına dayandığı açıktır, Sümer sistemindeki 10 böyle anlaşılabilir ; 6 nereden gelmiştir ve niçin?
—————-
Ondalık Altmışlık
I I
10 10
10 x 10 10 x 6
(10 x 10) x 10 (10 x 6) x 10
(10 x 10 x 10 ) x 10 (10 x 6 x 10 ) x 6
—————-
Mezopotamya‘da bulunan binlerce matematik tabledi arasında, birçokları hazır hesaplamalar taşımaktadır. Ancak (1,10,60 gibi) küçük sayılardan büyüklere doğru gitmemekte ; ancak astronomik denilebilecek bir rakamdan, 12960000’den başlayarak aşağı doğru azalmaktadırlar. Th. G. Pinches [ Some Mathematical Tablets of the British Museum (British Museum’dan bazı Matematik Tabletleri)] tarafından alıntı yapılan bir örnek en üst satırda şöyle başlar
—————-
1. 12960000 bunun üçte ikisi 8640000
2. bunun yarı kısmı 6480000
3. bunun üçüncü kısmı 4320000
4. bunun dördüncü kısmı 3240000
—————-

“bunun sekseninci kısmı 180000” deyip, 400’üncü kısmı “32400” a dek devam eder. Başka tabletler bu işlemi 16.000’inci kısma (810’a) eşittir) kadar izler; bu dizinin başlangıç rakamı 12960000’in 216.000’nci kısmı olan 60’ a kadar sürdüğüne şüphe yok.
—————-
Nippur ve Sippar’daki tapınak kütüphanelerinden ve Asur kralı Asurbanipal’in Ninova’daki kütüphanesinden çıkarılan binlerce matemetik tabletini inceledikten sonra H. V. Hilprecht [ The Babylonian Expedition of the University of Pennsylvania ( Pensilvanya Üniversitesi Babil Keşif Gezisi)] 12960000 sayısının gerçekten de astronomik olduğu sonucuna vardı ; her 2160 yılda bir Güneş’e doğan burç takımyıldızlarını tam bir Ev kaydıran Presesyon(bilmedikleriniz’de) fenomeninden kaynaklanmaktaydı. On iki Evin daireyi tamamlaması, yani Güneş’in başlangıçtaki arka fon konumuna gelmesi 25920 yıl sürmektedir ; 12960000 sayısı tamamlanan beş yüz Presesyon dairesini temsil etmektedir.
—————-
Hilprecht ve diğerlerinin düşündüğü gibi, Sümerlilerin sadece presesyon fenomeninin farkında olmakla kalmayıp, zodyakta bir Ev’den diğer Ev’e kayışın 2160 yıl sürdüğünün de farkında olduklarını öğrenmek inanılmaz birşeydi ; matematik sistemleri için her biri (insan ömrü için) fantastik bir rakam olan 25920 yıl gerektiren , beş yüz tamamlanmış on iki Ev döngünüsünü temsil eden bir sayıyı seçmiş olmaları ise iyice anlaşılmaz bir şeydir. Aslında modern gökbilimi, fenomenin varlığını ve Sümer’de hesaplandığı gibi dönemlerini kabul ediyorken, ne şimdi ne de geçmişte, tek bir Ev’in kaymasını bile (artık Kova burcuna kayış beklenmekte) şahsen tecrübe eden bir bilim adamı yoktur ve tüm bilimcileri bir araya getirsek bile tek bir döngünün tamamlanmasına tanık olmamışlardır. Yine de, işte Sümer tabletlerinde mevcut.
—————-
Hilprecht’in doğru biçimde önerdiği gibi, 12960000 sayısı gerçekten de gökbilimden kaynaklanmıştı ; tam bir presesyonel döngünün tamamlanması için gereken zaman (25920 yıl). Ama bu döngü daha insani boyutlara indirilebilirdi, yani tek bir zodyak EV’inin presesyonuna. Aslında 2160 yıldaki tek bir kayma bile bir Dünyalının ömrünün çok ötesinde olmasına rağmen, her 72 yılda bir, bir derecelik kayma gözlenebilir bir fenomendi. Formüldeki “dünyasal” unsur buydu.
—————-
Sonra, Anunnakilerin 3600 Dünya yılı sürdüğünü bildikleri Niburu’nun yörüngesi vardı. İşte bu noktada iki temel ve değişmez fenomen, yani Niburu ve Dünya’nın hareketlerini birleştiren belirli uzunluktaki döngüler 3600 : 2160 oranındaydı. Bu oran 10 : 6 ‘ya indirgenebilir. Her 21600 yılda bir Niburu, Güneş etrafında altı yörünge tamamlıyor ve Dünya on zodyak evi kayıyordu.
İşte , “altmışlık” denilen 6 x 10 x 6 x 10 almaşık sayma sistemini yaratan bu olabilirmiydi acaba?
Kaynak: Zecharia Sitchin, Kozmik Tohum (Sf:227-231)
Sümerler 60 rakamına dayanan seksajismal sayı sistemini kullanan Sümerler’in “sos” dedikleri bu 60′lık birim bütün zaman ve mekan hesaplarında kullanılmaktaydı ve onları bir uyum içersinde birbirine bağlıyordu. Ayı 30, yılı 360 gün olarak hesapladılar. Gece ve gündüzü 12′şer saate böldüler. Bir yılı 12 ay olarak hesapladılar. Ay ve Güneş tutulmasını hesapladılar. Aritmetik ve geometrinin temellerini attılar. Çarpma ve bölme cetvellerini buldular. Daireyi 360 dereceye böldüler
Maya sayı sistemi
maya sayı sistemi 20 lik tabana göredir.
Not Googleden eski uygarlıkla ilgili sayı sistemlerini arayacaksan çok fazla miktarda bilgi var.
Aramayı uygarlığın ismini yazarak sayı sistemi ekleyerek yaparsan bulursun
örnek arama şekli
Maya sayı sistemi
sümer sayı sistemi
gibi.

bide bu var hangisi işinize yararsa =) ....


gizem8hilal 10 Nisan 2011 21:23

http://www.math.wichita.edu/history/Images/num2.gif

http://mevcut.neteyaz.com/wp-content/fotograflar/Eski%20Yunan.jpg

http://www.bilgiustam.com/resimler/2008/02/romarakamtablo.png


MaTrOaK 2 Mayıs 2011 19:53

Sümer sayı sistemi altmışlık’tır. , yani “60’ı baz alır”. Sayma 1’den 60’a kadardır., tıpkı bizim bugün 1’den 100’e kadar saymamız gibi. Ama bizim “iki yüz” dediğimiz yerde, Sümerliler “2 geş” derdi ya da yazardı; bu , 120’ye denk gelen 2 x 60 anlamına geliyordu. Hesaplamalarında metin “yarısını al” ya da “üçte birini al” dediğinizde, bunun anlamı 60’ın yarısı = 30, 60’ın üçte biri = 20’dir. Ellerimizin parmaklarını saymaya alıştırılıp ondalık (“10 kez”) sistemle yetiştirilen bizler için bu, alışılmadık ve karmaşık görünebilir ama matematikçiler için altmışlık sistem bir keyiftir.
—————-
10 sayısı pek az tam sayıyla (2 ve 5 ile) bölünebilir. 100 rakamı ise sadece 2,4,5,10,20,25 ve 50 ‘ye tam bölünebilir. Ama 60 sayısı 2,3,4,5,6,10,12,15,20 ve 30’a bölünebilir. Gün içindeki saatleri sayışımızda Sümerlilerin 12’sini, zamanı sayışımızda Sümerlilerin 60’ını (bir dakika 60 saniye, bir saat 60 dakika) ve geometride Sümerlilerin 360’ını (bir dairede 360 derece olması) kullanmamızdan da anlaşıldığı gibi, altmışlık sistem göksel bilimlerde, zamanı hesaplamada ve (bir üçgenin açılarının toplamının 180 derece ve bir karenin açılarının toplamının 360 derece olduğu) geometride hala tek mükemmel sistemdir. Hem teorik hem de uygulamalı geometride bu sistem, çeşitli ve karmaşık bölgeleri, her türden fıçının hacmini, kanalların uzunluğunu veya gezegenler arasındaki uzaklığı hesaplamayı mümkün kılmaktadır.
—————-
“Altmışlık” adı verilmiş olmasına rağmen Sümerlilerin sayı ve matematik sistemi aslında sadece 60 sayısına değil, 6 ve 10’un bileşimine dayanmaktaydı. Ondalık sistemde her bir üst basamak, bir önceki toplamı 10 ile çarparak elde edilirken , Sümer sisteminde sayılar altmışlık çarpımlarla arttırılıyordu; bir kez 10 ile, bir kez 6 ile , sonra 10 ile, sonra tekrar 6 ile… Bu metot günümüz bilginlerini pek şaşırtmaktadır. Ondalık sistemin insanın el parmaklarının sayısına dayandığı açıktır, Sümer sistemindeki 10 böyle anlaşılabilir ; 6 nereden gelmiştir ve niçin?
—————-
Ondalık Altmışlık
I I
10 10
10 x 10 10 x 6
(10 x 10) x 10 (10 x 6) x 10
(10 x 10 x 10 ) x 10 (10 x 6 x 10 ) x 6
—————-
Mezopotamya‘da bulunan binlerce matematik tabledi arasında, birçokları hazır hesaplamalar taşımaktadır. Ancak (1,10,60 gibi) küçük sayılardan büyüklere doğru gitmemekte ; ancak astronomik denilebilecek bir rakamdan, 12960000’den başlayarak aşağı doğru azalmaktadırlar. Th. G. Pinches [ Some Mathematical Tablets of the British Museum (British Museum’dan bazı Matematik Tabletleri)] tarafından alıntı yapılan bir örnek en üst satırda şöyle başlar
—————-
1. 12960000 bunun üçte ikisi 8640000
2. bunun yarı kısmı 6480000
3. bunun üçüncü kısmı 4320000
4. bunun dördüncü kısmı 3240000

“bunun sekseninci kısmı 180000” deyip, 400’üncü kısmı “32400” a dek devam eder. Başka tabletler bu işlemi 16.000’inci kısma (810’a) eşittir) kadar izler; bu dizinin başlangıç rakamı 12960000’in 216.000’nci kısmı olan 60’ a kadar sürdüğüne şüphe yok.
—————-
Nippur ve Sippar’daki tapınak kütüphanelerinden ve Asur kralı Asurbanipal’in Ninova’daki kütüphanesinden çıkarılan binlerce matemetik tabletini inceledikten sonra H. V. Hilprecht [ The Babylonian Expedition of the University of Pennsylvania ( Pensilvanya Üniversitesi Babil Keşif Gezisi)] 12960000 sayısının gerçekten de astronomik olduğu sonucuna vardı ; her 2160 yılda bir Güneş’e doğan burç takımyıldızlarını tam bir Ev kaydıran Presesyon(bilmedikleriniz’de) fenomeninden kaynaklanmaktaydı. On iki Evin daireyi tamamlaması, yani Güneş’in başlangıçtaki arka fon konumuna gelmesi 25920 yıl sürmektedir ; 12960000 sayısı tamamlanan beş yüz Presesyon dairesini temsil etmektedir.
—————-
Hilprecht ve diğerlerinin düşündüğü gibi, Sümerlilerin sadece presesyon fenomeninin farkında olmakla kalmayıp, zodyakta bir Ev’den diğer Ev’e kayışın 2160 yıl sürdüğünün de farkında olduklarını öğrenmek inanılmaz birşeydi ; matematik sistemleri için her biri (insan ömrü için) fantastik bir rakam olan 25920 yıl gerektiren , beş yüz tamamlanmış on iki Ev döngünüsünü temsil eden bir sayıyı seçmiş olmaları ise iyice anlaşılmaz bir şeydir. Aslında modern gökbilimi, fenomenin varlığını ve Sümer’de hesaplandığı gibi dönemlerini kabul ediyorken, ne şimdi ne de geçmişte, tek bir Ev’in kaymasını bile (artık Kova burcuna kayış beklenmekte) şahsen tecrübe eden bir bilim adamı yoktur ve tüm bilimcileri bir araya getirsek bile tek bir döngünün tamamlanmasına tanık olmamışlardır. Yine de, işte Sümer tabletlerinde mevcut.
—————-
Hilprecht’in doğru biçimde önerdiği gibi, 12960000 sayısı gerçekten de gökbilimden kaynaklanmıştı ; tam bir presesyonel döngünün tamamlanması için gereken zaman (25920 yıl). Ama bu döngü daha insani boyutlara indirilebilirdi, yani tek bir zodyak EV’inin presesyonuna. Aslında 2160 yıldaki tek bir kayma bile bir Dünyalının ömrünün çok ötesinde olmasına rağmen, her 72 yılda bir, bir derecelik kayma gözlenebilir bir fenomendi. Formüldeki “dünyasal” unsur buydu.
—————-
Sonra, Anunnakilerin 3600 Dünya yılı sürdüğünü bildikleri Niburu’nun yörüngesi vardı. İşte bu noktada iki temel ve değişmez fenomen, yani Niburu ve Dünya’nın hareketlerini birleştiren belirli uzunluktaki döngüler 3600 : 2160 oranındaydı. Bu oran 10 : 6 ‘ya indirgenebilir. Her 21600 yılda bir Niburu, Güneş etrafında altı yörünge tamamlıyor ve Dünya on zodyak evi kayıyordu.
İşte , “altmışlık” denilen 6 x 10 x 6 x 10 almaşık sayma sistemini yaratan bu olabilirmiydi acaba?
Kaynak: Zecharia Sitchin, Kozmik Tohum (Sf:227-231)
Sümerler 60 rakamına dayanan seksajismal sayı sistemini kullanan Sümerler’in “sos” dedikleri bu 60′lık birim bütün zaman ve mekan hesaplarında kullanılmaktaydı ve onları bir uyum içersinde birbirine bağlıyordu. Ayı 30, yılı 360 gün olarak hesapladılar. Gece ve gündüzü 12′şer saate böldüler. Bir yılı 12 ay olarak hesapladılar. Ay ve Güneş tutulmasını hesapladılar. Aritmetik ve geometrinin temellerini attılar. Çarpma ve bölme cetvellerini buldular. Daireyi 360 dereceye böldüler
Maya sayı sistemi
maya sayı sistemi 20 lik tabana göredir.
Not Googleden eski uygarlıkla ilgili sayı sistemlerini arayacaksan çok fazla miktarda bilgi var.
Aramayı uygarlığın ismini yazarak sayı sistemi ekleyerek yaparsan bulursun
örnek arama şekli
Maya sayı sistemi
sümer sayı sistemi
gibi.

""Alıntıdır""


Misafir 4 Mayıs 2011 22:46

bir kaç tane daha tablo koyabilirmisinizzzzz ? şimdiden teşekkürler


EceAda 14 Kasım 2011 11:02

performans ödevim acil lazım
 
eski uygarlıkları sayıları hangi sembollerle belirtklerini ve nasıl yazdıklarını araştırınız. (kaynaklar:ıfrah georges, rakamların evrensel tarihi , tübitak, ankara 2005,ball jonny, tudem, 2005 çin)yazıyor ne olur cevabını özenle yazınnnnnnnnnnnnnnnnn....................


SaKLI 14 Kasım 2011 11:06

Alıntı:

EceAda adlı kullanıcıdan alıntı (Mesaj 2210387)
eski uygarlıkları sayıları hangi sembollerle belirtklerini ve nasıl yazdıklarını araştırınız. (kaynaklar:ıfrah georges, rakamların evrensel tarihi , tübitak, ankara 2005,ball jonny, tudem, 2005 çin)yazıyor ne olur cevabını özenle yazınnnnnnnnnnnnnnnnn....................

http://www.math.wichita.edu/history/Images/num2.gif

http://mevcut.neteyaz.com/wp-content/fotograflar/Eski%20Yunan.jpg

http://www.bilgiustam.com/resimler/2008/02/romarakamtablo.png


EceAda 14 Kasım 2011 11:08

performans ödevim acil lazım
 
eski uygarlıkları sayıları hangi sembollerle belirtklerini ve nasıl yazdıklarını araştırınız. (kaynaklar:ıfrah georges, rakamların evrensel tarihi , tübitak, ankara 2005,ball jonny, tudem, 2005 çin)yazıyor ne olur cevabını özenle yazınnnnnnnnnnnnnnnnn....................



Saat: 07:57
Sayfa 1 / 4

©2005 - 2024, MsXLabs - MaviKaranlık