Arama

Fizik Bilimi - Tek Mesaj #2

asla_asla_deme - avatarı
asla_asla_deme
VIP Never Say Never Agaın
16 Ekim 2008       Mesaj #2
asla_asla_deme - avatarı
VIP Never Say Never Agaın

fizik


gözlenebilir evrenin temel bileşenleri arasındaki etkileşmelere ve maddenin yapısına ilişkin temel sorunlarla ilgilenen bilim. Fizik sözcüğü, Eski Yunancada “doğa” anlamına gelen physis’ten türemiştir. Uzun süre doğa felsefesi olarak anılan fizik, doğanın makroskopik ve mikroskopik tüm görünümlerini inceleme konusu olarak seçmiştir. Fiziğin amacı, farklı olayları olanaklı en genel yollarla toparlayıp matematik diliyle verilmiş duyarlı ifadelerle açıklayan doğa yasalarını ya da kapsayıcı ilkeleri ortaya çıkarmaktır. Bilimsel bilginin gelişmesiyle fiziğin içeriği sürekli değişmekteyse de, gözlenebilir temel fiziksel olayların açıklanmasına yönelik hedefi değişmemiştir. Kimyasal fizik, astrofizik, jeofizik, biyofizik gibi komşu alanlar, fiziğin ilke ve tekniklerinin uygulanmasıyla doğmuştur.
Ad:  fizik2.jpg
Gösterim: 18492
Boyut:  30.1 KB

Kesinlikle denetlenen koşullar altında, olayların duyarlıklı nicel ifadelerle gözlenmesi olan deney ve birleştirilmiş kavramsal bir taslağın matematik terimlerle kurulması olan kuram, fiziğin gelişmesinde temel ve tamamlayıcı bir rol oynarlar. Tüm fiziksel soruşturmalar önünde sonunda uzay ve zamandaki maddeyi içeren olguların incelenmesine indirgenebilir; ölçülebilir fiziksel nicelikler de uzunluk, zaman ve kütlenin temel birimleri cinsinden ifade edilebilir.

Fiziğin belki de son amacı, doğanın temel bileşenlerinin özelliklerini ve bunların karşılıklı etkileşmelerini tek bir plan içinde toplayarak, bu plandan makroskopik olaylar ile parçacık yığışımlarının tüm özelliklerini çıkarsayabilmektir. Çağdaş fiziğin önünde, böyle büyük bir şema için yapılan araştırmalar bulunmaktadır. Sonuca henüz ulaşılmamışsa da, bugün temel kabul edilen fizik yasalarının sayısı oldukça azaltılabilmiştir.

FİZİĞİN TARİHSEL GELİŞİMİ.


Doğa olaylarının sorgulanmaya başlaması, yani fiziğin doğuşu, ilk uygarlıkların ortaya çıkmasıyla birlikte oldu. Mezopotamya’da IÖ 3000’lerde, Sümer ve Akad uygarlıklarında su değirmenleri kullanılıyor, ağır heykeller dikiliyor, piramitler yapılıyor, zaman, uzaklık ve hız ölçümleri gerçekleştirilebiliyordu. İÖ 2500’den sonra Mısır’daki uygarlıklar da, pratik kaygıları ağır basan mühendislik sorunlarının çözümünde fizik kurallarından yararlanmışlardı.

Ama bu pratik gereksinmelerden doğan tekniklerin ortak temellerini oluşturan ilkelerin aranışı, İÖ 6. ve 5. yüzyıllarda Ege kıyılarında yaşayan filozofların soyutlamalarla doğayı sorgulama yöntemlerinde ortaya çıktı: Bu dünya, kaostan nasıl doğdu? Çokluğun ve çeşitliliğin kökenleri nedir? Hareket ve değişim nasıl hesaplanabilir? Bazı temel kabullerden mantıksal olarak sistematik fizik kuramları çıkarsamanın ilk örneği, Thales’in (İÖ 6. yy) suyu tüm varlıkların temel maddesi saymasıdır. Tha- les, iki temel kuvvet olarak, büzülmeye yol açan merkezcil kuvvet ile genişlemeye yol açan merkezkaç kuvveti tanımladı.
Antik Çağ filozoflarından Herakleitos (İÖ y. 540 - y. 480), bütün nesnelerin sürekli hareket halinde olduğunu ve toplam madde miktarının sabit olduğunu öne sürerken, Empedokles (İÖ y. 490 - 430), evrenin toprak, hava, ateş ve su dörtlüsünden oluştuğu görüşünü ortaya attı. Atom kavramının babası ise Anaksagoras (İÖ y. 500 - y. 428) oldu. Anaksagoras, tüm maddenin, “yaşamın tohumları” olarak adlandırdığı atomlardan oluştuğunu, bunların sürekli hareket ettiğini, havanın bir ağırlığı olduğunu belirtti. Demokritos (İÖ y. 460 - y. 370), atom kuramına “zorunluluk” ilkesini katarken, Leukippos (İÖ 5. yy) ve Epikuros (İÖ 341- 270) atomcu okulun izleyicileri oldular.

Platon’un öğrencisi Aristoteles, atom görüşünü yadsıyarak nicel madde kuramı yerine oldukça yalınkat ve nitel bir yaklaşımı yeğledi. Aristoteles, ilkel maddeyi sıcak ve soğuk, ıslak ve kuru gibi niteliklere indirgedi. Dirençli bir ortamda bir cismin hareketinin, harekete yol açan kuvvetle orantılı, ortamın direnciyle ters orantılı olduğunu belirleyerek bu bağıntıyı boşluğun varoluşuna karşı bir kanıt olarak kullandı. Aristoteles’in fiziği tüm ortaçağı etkiledi ve hatta Aquino’lu Tommaso tarafından Hıristiyan skolastiğinde kullanıldı.

Syrakusa’lı Arkhimedes (İÖ y. 290/280 - y. 212/211), İskenderiyeli Heron (ü. İS 62), Ktesibios (ü. İÖ y. 270) gibi araştırıcılar ise deneysel araştırmalarıyla hidrostatik, mekanik gibi fizik dallarına önemli katkılarda bulundular.
İlkçağ filozoflarından Aristoteles’in düşünceleri, ortaçağdaki dünya görüşlerinin tümü üzerinde etkinliğini sürdürdü. Bilimin, felsefe ve dinin etkilerinden sıyrılıp kendine özgü bir araştırma disiplinine dönüşmesi eski çağdan hemen hemen 2 bin yıl sonra başladı. Rönesans’ın ve Reform hareketinin etkileriyle “niçin” sorusunun yerine “nasıl” sorusunun geçmesi, 16. yüzyıl içinde gündeme geldi.

Galilei’nin mekaniğe katkıları, Koperni- kusçuluğun savunulmasıyla doğrudan ilişkiliydi. Düşen cisimlerin hızlanmalarıyla ilgilenen Galilei, serbest düşme yasasını, yani düşmede alınan yolun cismin kütlesiyle değil, geçen sürenin karesiyle orantılı olduğunu ortaya çıkardı. Bunu, eylemsizlik ilkesiyle birleştirerek, bir merminin yörüngesinin paraboli biçiminde olacağını belirledi. 17. yüzyılda Rene Descartes, özellikle madde kavramı üzerinde durarak doğadaki tüm olayları maddeye ve harekete indirgeyen mekanikçi felsefeyi kurdu. Ayrıca çarpma ve dairesel hareket üzerine çalışmalar da yaptı.

17. yüzyılın sonunda Isaac Newton, Philosophiae naturalis principia mathematica (1687; Doğa Felsefesinin Matematik İlkeleri) adlı yapıtında, mekaniğin temel sorunlarını çözen üç yasasını yayımladı. Bu yüzyılda hızla gelişen bir fizik dalı da optikti. Roger Bacon gibi 13. yüzyıl bilginlerinin yapıtlarını tarayan Kepler, teleskopların matematiksel incelemesini yaptı, mercekler için bir geometri kuramı geliştirdi, ışığın kırılma özelliğini açıkladı. Newton’ın beyaz ışığın bileşik ışık olduğunu ortaya çıkardığı renk kuramı ve ışığın parçacık özellikli olduğunu belirten korpüskül kuramı ile Huygens’in dalga özellikli ışık kuramı optiğe en önemli katkılar oldu. Böyle, Torricelli, Pascal, Von Guericke gibi bilginler, gazların basınç ve hacim ilişkilerine nicel yasalar getirdiler.

18. ve 19. yüzyıllar bilimsel çalışmaların altın çağı olarak nitelenir. Değişen sosyoekonomik yapı var olan kuramlar içinde doğa biliminin en büyük atılımı yaparak bağımsız bir kurum halinde gelişmesine olanak sağladı.
Elektriğe ilişkin çalışmalar, Leyden şişesinde yük birikimi sağlanmasından sonra deneysel araştırma alanına kaydı. 1733’te du Fay ve Nollet, “reçinemsi” ve “camsı” olarak adlandırdıkları iki tür elektriklik olduğunu buldular, 1787’de de Coulomb, elektrostatiğin temel yasalarını yayımladı. Galvanik ve voltaik elektriğin bulunuşuyla elektrik üreteçlerinin doğuşu, bu alandaki araştırmaların hızla gelişmesini sağladı. 1819’da 0rsted, elektrik akımına eşlik eden magnetik etkiyi buldu, 1827’de Ampere elektrodinamiğin yasalarını geliştirdi. 1831’de ise Faraday elektromagnetik indüksiyonu ortaya çıkardı. 1855’ten başlayarak J. C. Maxwell’in çalışmalarıyla klasik elek- tromagnetizma kuramı ortaya çıktı.

Sanayi devriminin bilim üzerindeki en açık etkisi, ısının mekanik işe dönüştürülmesine yönelik çabalardır. Carnot, Clausius, Kelvin, Helmholtz gibi bilginler, termodinamik bilim dalının gelişmesinde önemli katkılarda bulundular. Maxwell ve Boltzmann gazların kinetik kuramını geliştirerek, maddenin atom yapısının tanımlanmasına yönelik çok önemli bir adım attılar. Işığın özellikleri ve esirin varlığına ilişkin olarak 19. yüzyıl sonunda gerçekleştirilen araştırmalar ise 20. yüzyılın devrimci kuramlarına temel oluşturdu.

20. yüzyılda fiziğin yapısını temelinden sarsan iki kuram, Max Planck’ın 1900’de öne sürdüğü kuvantum kuramı ile Albert Einstein’m 1905’te yayımladığı görelilik kuramıdır. Atomun, çekirdeğin ve temel parçacıkların bulunması, plazma fiziği ve elektroniğin hızla gelişmesi gibi deneysel ve uygulamalı atılımlar, kuramsal ve deneysel bilgilerin olağanüstü artmasının yanı sıra, fiziğin çeşitli alanlarında gerçekleştirilen eşgüdümlü araştırmalarla sağlanmaktadır.

FİZİĞİN DALLARI.


Mekanik.


Cisimlerin hareketleri ve etkileşmelerinin temel fizik ilkeleriyle kavranmasına yönelik olarak incelenmesi mekaniğin kapsamına girer. Bu anlamda tüm fizik, mekanik olarak görülebilir. Klasik mekanik ya da Newton mekaniği, atomlarla karşılaştırıldığında, oldukça büyük cisimlerle ve ışık hızından çok daha düşük hızlarla ilgilidir.
Klasik mekanik içinde, kinematik yalnızca bir parçacığın hareketinin tanımlanmasıyla ilgilenirken, dinamik parçacığın hareketi ile buna etkiyen kuvvet arasındaki bağıntıları inceler. Statik, denge konumundaki nesnelerle ilgilenir. Esneklik, biçimi bozulabilen katiların mekaniğidir. Hidrostatik ve hidrodinamik ise sırasıyla durgun ve hareketli akışkanlan araştırır.
Klasik mekaniğin temellerini, Isaac Newton’ın üç hareket yasası oluşturur. Birinci yasa, bir cismin, bir etki altında kalmadığı sürece düz bir çizgi boyunca sabit hızla hareket edeceğini öngörür. İkinci yasa, bir cisme etkiyen net kuvvetle cismin momen- tumunun değişim hızı arasındaki bağıntıyı verir. Etki-tepki yasası olarak bilinen üçüncü yasa, eşit büyüklükte ama zıt yönlü kuvvetlerin etkisiyle çarpışan iki cisim söz konusu olduğunda, gene eşit büyüklükte ve zıt yönlü kuvvetlerin ortaya çıkacağını belirtir.
Kütleçekimi, momentum, açısal momentum, enerji ve korunum yasaları mekaniğin belli oaşlı kavramları olarak sayılabilir.

Termodinamik ve ısı.


Termodinamik, fiziksel olayların oluşum koşullarını ve ara etkileşimlerini, enerji ve entropi değişimleriyle inceleyen bilim dalıdır. Dört temel yasa üzerine kuruludur ve tümdengelim yöntemiyle çeşitli sonuçlara ulaşır. Birinci yasa, yalıtılmış bir sistem içindeki tüm değişimler sonunda enerji içeriğinin sabit kalacağını ortaya koyan, enerjinin korunumu yasasıdır; ikinci yasa, yalıtılmış bir sistemde entropinin sürekli olarak artacağını belirtir; üçüncü yasa, mutlak sıfır sıcaklığında yetkin kristallerin entropisinin sıfır olacağını ortaya koyar. Sonuncusu, sıfırına yasa olarak bilinen bir aksiyomdur; buna göre, üçüncü bir sistemle ayrı ayrı ısıl dengede olan iki sistem, birbiriyle de ısıl dengededir.

Özellikle Maxwell ve Boltzmann’ın katkılarıyla geliştirilen istatistiksel mekanik, çok sayıdaki parçacıkların toplu davranışlarını olasılık yasalarına dayanarak açıklayan bir yöntem kullanır. İstatistiksel mekaniğe göre bir sistemin düzensizlik derecesi, sistemin entropisinin bir fonksiyonudur. Isı olarak aktarılan enerji, düzensiz hallerde bulunan parçacıkların enerjisidir. Sıcaklık ise, enerjinin parçacıklar arasında nasıl paylaşıldığının nicel bir ölçüsüdür.

Elektrik ve magnetizma.


İlkin farklı olaylar olarak görülen, sonra elektromagnetizma adı altında birleştirilen bu bilim dalı, elektrik yükü özelliği taşıyan parçacıkların etkileşmelerini inceler. Yüklü parçacıklar durgun olduklarında bir elektrik kuvvetiyle etkileşirler. Hareketli olduklarında ise buna ek olarak magnetik kuvvet ortaya çıkar.
Elektromagnetizmada alan kavramı önemli rol oynar. Elektrik yüklü bir parçacığın, kendisini çevreleyen uzaydaki tüm bölgelerde bir elektrik alanı yarattığı ve bu alan içinde bulunan bir başka yüklü parçacığın buna bir elektriksel kuvvetle karşılık vereceği düşünülür. Klasik elektromagnetizmanın tümü, 19. yüzyılda J. C. MaxweH’in ortaya koyduğu dört denklemle özetlenebilir. Bu bağıntılar, yüklü parçacıklar arasındaki etkileşmeleri kapsar.

Optik.


Işık elektromagnetik dalgalardan oluştuğundan, ışığın yayılmasını inceleyen optiğin konusu, uygulamalı elektromagnetizma olarak görülebilir. Bununla birlikte, bu fizik dalını, ışık ışınlarının yalnızca izlediği yollarla ilgilenen geometrik optik ve ışığın ayırt edici dalga olaylarını inceleyen fiziksel optik olarak iki bölüme ayırmak, alışılmış bir sınıflandırmadır.
Temel dalga olayı, uzayda bir noktada karşılaşan iki dalganın birleşerek farklı bir bileşke dalga vermesi olan girişimdir. Benzer bir olay da, çok sayıda dalga kaynağının yol açtığı girişim olarak bilinen kınnımdır. Işığın dalga özellikleri, interferometre ve kırınım ağı gibi düzeneklerle araştırılır.

Atom fiziği.


Klasik mekanik ve klasik elektromagnetizma, atom fiziğindeki problemlere uygulandığında kökten yanlışlıklara yol açmaktadır. Atomlar, çok küçük Güneş sistemleri olarak düşünülemez. Atomun yapısı, ancak kuvantum mekaniği temelinde kavranabilir. Daha ince ayrıntılar ise, görelilik kuvantum mekaniğini gerektirir.
Atomlar çok küçük olduğundan, bunların özellikleri ancak dolaylı deney teknikleriyle anlaşılabilir. Bunların başında, maddenin saldığı ya da soğurduğu elektromagnetik ışınımların ölçülmesi ve yorumlanmasıyla uğraşan spektroskop gelir. Tüm kimyasal elementler, özgün dalgaboylarmda ışınımlar veren tayflar gösterir. Dalga mekaniği kullanılarak ve elektron kütlesi ve yükü, ışık hızı, Planck sabiti gibi bazı atom sabitlerinin yardımıyla belirtici dalgaboyları ve atomun enerjileri hesaplanabilir.
Katı hal fiziği. Yoğun haldeki maddelerin, elektriksel, magnetik, optik ve esneklik özelliklerini araştıran katı hal fiziği, öncelikli olarak kristallerle ilgilenir; bunun nedeni, bu maddelerin basit geometrik düzenlenişlerinin, kuvantum kuramının çok cisimli sistemlere uygulanmasında kuramsal kolaylıklar sağlamasıdır.

Nükleer fizik.


Atomdan yaklaşık on bin kez küçük olan atom çekirdeğinin yapısını ve kararsız çekirdeklerin ışımalarını araştıran bilim dalı nükleer fiziktir. Kararsız radyoaktif çekirdekler, alfa parçacığı, beta parçacığı, kütlesiz nötrinolar, pozitronlar gibi parçacıklar da salarlar (bak. radyoaktiflik). Çekirdek özellikleri, saçılım deneyleriyle saptanır. Çok yüksek hızlara çıkarılan yüksek enerjili parçacıklarla bombalanan (dövülen) hedef çekirdeklerin bu çarpışmalardan sonraki dönüşümleri, çekirdek tepkimeleri olarak adlandırılır. Çekirdek bölünmesi ve çekirdek kaynaşması yeni elementlerin oluşmasına yol açan tepkimelerdir.

Parçacık fiziği.


Çağdaş fiziğin en yoğun ilgi alanı, temel parçacıklar üzerine yapılan araştırmalardır. Parçacık fiziği ya da yüksek enerji fiziği olarak bilinen bu dal çok sayıdaki temel parçacık arasındaki ilişkilerin aydınlatılmasıyla uğraşır. Kararlı elektron ve protondan, 1(P23 saniyelik ömrü olan çok kararsızlarına kadar geniş çeşitlilik gösteren bu parçacıklar, kabarcık odası gibi düzenekler aracılığıyla incelenir.
Çağdaş fiziğin kuramsal temellerini, kuvantum ve görelilik kuramları oluşturmaktadır. Fiziğin çeşitli dallarının konuları, deneysel yöntemleri ve kuramsal teknikleri ne kadar farklı olsa da, bu iki kuramın uyarlamalarına, birçok araştırma alanında rastlanmaktadır. Kuvantum mekaniği, elektromagnetik ışınımın sürekli dalgalardan değil, enerji ve momentumlan, frekansları ile orantılı olan parçacığa benzer fotonlar- dan oluştuğunu ileri sürer. Klasik mekanik, bir olası değerler aralığında sürekli değişebilen fiziksel niceliklerle belirlenirken, kuvantum kuramının belirleyici özelliği kesikli (ayrık) değerler taşıması ve içkin olarak belirsizlik ılkesine yer vermesidir.
A. Einstem’ın ortaya koyduğu görelilik kuramı iki temel postula üzerine kurulmuştur:
1) Bir ışık kaynağına göre hareket durumları ne olursa olsun tüm gözlemciler, ışık hızı için aynı değeri ölçerler.
2) Tüm eylemsiz koordinat sistemlerinde fizik yasaları aynıdır. Birinci postuladaki ışık hızının değişmezliği, deneysel olarak kanıtlanmıştır. İkinci postula ise, klasik mekanik için de geçerlidir.

FİZİĞİN KAVRAM VE İLKELERİ.


Fizik biliminin yapısına temel oluşturan üç düşünce ana hatlarıyla şöyle sıralanabilir:
Korunum yasaları ve bakışım. Fizikteki korunum yasaları, yalıtılmış bir fiziksel sistemdeki kimi ölçülebilir niceliklerin zaman içinde değişmeyeceği kuralını koyar. Korunum yasalarının varlığı, doğanın bakışım yasalarıyla, yani uzaysal ve zamansal koordinatların döndürme, ötelenme, yansıma gibi çeşitli bakışım işlemleriyle değişmezliği kuralıyla doğrudan ilişkilidir.
En yaygın korunum yasası, maddeyle ilgili olanıdır. Yasa, bilimsel olarak ilk kez 18. yüzyıl sonunda Fransız kimyacı A. Lavoisier tarafından ifade edildi. Buna göre, evrendeki madde toplamı değişmez, yani madde ne yaratılabilir ne de yok edilebilir. Enerjinin korunumu yasası, 19. yüzılda matematik formülasyonuna kavuştu. Bu yasa da, evrendeki toplam enerji niceliğinin sabit kaldığını bildirir. Einstein’ın kütle ile enerjinin eşdeğerliğini veren denkleminden sonra iki yasa birleştirilmiştir.
Newton mekaniğinde, bir sistemin üzerine bir dış kuvvet etkimediği durumlarda toplam doğrusal momentumun sabit olduğunu belirleyen bir korunum yasası vardır. Bu yasa, geometrik uzayın ötelenme bakışımıyla ilişkilidir. Benzer olarak, boş uzayın her bölgesinin birbiriyle özdeş olduğunun kabulü, tam bir döngüsel bakışım bulunduğu anlamını taşır. Bu da, bir cismin kütlesine ve açısal hızına ilişkin olan ve açısal momentum denilen fiziksel niceliğin korunumu yasasıyla ilgilidir.

Temel parçacıklar düzeyinde kuvantum mekaniği ve özel görelilik kuramı önem kazanmaktadır. Korunumun yasaları ve bunlara ilişkin bakışımlar da birincil rollerde bulunur. Kuvantum kuramı, kristaller, atomlar, çekirdekler ve temel parçacıklar gibi görece daha basit sistemlere uygulanır. Bunlarda dinamik ve içkin bakışımları gözlemek daha kolaydır. Kuvantum mekaniğinin ortaya koyduğu bakışımlardan biri uzamsal bakışımdır (p bakışımı). Uzay evirtim işlemcisine (operatör) parite (eşlem) işlemcisi denir. Bir parçacığın üç boyutlu koordinat sistemindeki durumunu belirleyen dalga denkleminde x, y ve z yerine —x, -y ve —z değerleri konduğunda dalga fonksiyonu değişmiyorsa, paritesi +1, değişiyorsa -1 kabul edilir. Paritenin korunumu yasası doğanın sağ vida ya da sol vida referans sistemleri arasında bir ayrım yapmayacağını öngörür. Zamansal bakışım (T bakışımı), hareketin zaman içinde geri döndürülüşüyle ilgilidir. Fizik yasalarının bir hareketin oluşumuna izin verdiği kabul edilirse ters hareket de izinli olmalıdır.

Zamanın tersinirliği şöyle anlatılabilir:
Bir sistemin hareketi, özgül koordinat ve hızlarla belirtilen durumlar dizisi olarak betimlendiğinde, tüm hareket doğrultuları, yani tüm hızlar, karşıt değerleriyle değiştirilirse sistem ters doğrultuda gene aynı durumlardan geçer. Geriye oynatılan bir sinema filminde herhangi bir resmin gene görülmesi bu bakışıma örnek olabilir. Uzay ve zamanın evirtim bakışımları yük eşlenimi adı verilen bir başka bakışımla birleşmiştir. Yük eşlenimi, her yüklü temel parçacığın karşıt parçacık olarak adlandırılan zıt yüklü bir eşleniği olacağını öngörür. Karşıt elektron ya da pozitron, karşıt proton, karşıt nötron, karşıt hidrojen gibi parçacıkların varlığı deneysel olarak kanıtlanmıştır.
Bu bakışımların birleştirildiği CPT bakışımı gibi değişmezlikler, ayrı ayrı yük ve parite korunumlarının söz konusu olmadığı zayıf etkileşimler durumunda geçerli olmaktadır. Bunlardan başka iç bakışımlar grubu içinde kimi mutlak, kimi yaklaşık bakışımlar da bulunmaktadır. Kesinlikle korunumlu yükler, izospin bakışımı, SU(3) bakışımı bunlara örnek olarak verilebilir.

Alan kuramı.


Fizikte bir alan, uzay ve zamanda gözlenebilir bir niceliğin sürekli dağılımı olarak tanımlanabilir. Ölçülebilir olması gereken bu gözlenebilir nicelik, bir sıvının rengi, atmosferdeki toz yoğunluğu, Yer’i çevreleyen magnetik alan gibi olaylar
çeşitlemesinden herhangi biri olabilir. Gözlenen nicelik, uzayda değişim gösterip zaman içinde değişmiyorsa statik alandan, aksi halde ise zaman değişimli alandan söz edilir. Bir alanın matematiksel tanımı, onun uzayın bir fonksiyonu olduğu kabulüne dayanır. Alandaki herhangi bir nokta, uzayda öbür noktalara göre konumu cinsinden belirlenir. Ölçülen özellik, doğrultudan bağımsızsa skaler niceliktir, doğrultuya bağlıysa vektördür.

Alanları sınıflandırmanın çeşitli yolları vardır; ama başlangıçta bunları maddesel olan ve maddesel olmayan alanlar olarak ikiye ayırmak gerekir. Maddesel alanlarda gözlenebilir nicelik, bir gazın sıcaklığı, bir sıvının hızı ya da yoğunluğu gibi, maddenin bir özelliğini gösterir. Maddesel olmayan alan ise herhangi maddesel bir özelliği betimlemez; belli koşullar altında uzayın bir noktasında ortaya çıkacak bazı gizli etkileri betimler. Örneğin, elektrik alanı böyledir. “Gözlenebilir” alan, alan fonksiyonuyla verilen ve uzayın x, y, z koordinatlarıyla tanımlanan bir noktasındaki değeri bulunabilen elektrostatik alandır. O noktada gerçekten var olan herhangi bir şey yoktur. Eğer bir elektrik yükü, x, y, z koordinatlarıyla tanımlanan noktaya yerleştirilirse, alan fonksiyonuyla orantılı bir kuvvetin etkisinde kalacaktır. Magnetik alan, kütleçekimi alanı ve olasılık alanları bu türden alanlara örnektir.

Alanlar, gözlenebilir fonksiyonlarının skaler, vektör ya da tensor oluşlarına göre de sınıflandırılabilir. Bir skaler nicelik, büyüklüğü olan, ancak yönü olmayan niceliktir. Kütle, yoğunluk, sıcaklık skaler niceliklerdir. Vektör, uzayda yönlenmiş niceliktir. Kuvvet, elektrik ve magnetik alan şiddetleri vektör niceliklerine örnek verilebilir. Alanın ölçülebilir niceliği yalnızca skaler ya da vektörel niceliklerle ifade edilemiyorsa ve böylesi birçok niceliğin bir arada ele alınması gerekiyorsa bir tensor kurulması gerekir.

Atmosferde herhangi bir noktadaki basınç, gaz molekülleri ile Yer arasındaki kütleçekimi etkisinden doğar. Bir yandan yeryüzüne doğru gaz moleküllerinin hızlanmasına yol açan bu çekim etkisinden, öbür yandan yüklendikleri ısıl enerji yüzünden birbirleriyle çarpışan moleküllerin atmosferin genişlemesini sağlayan etkisinden kaynaklanan iki karşıt eğilim arasında bir kararlı durum oluşur. Böylece atmosfer basıncı, yeryüzünden yüksekliğin azalan bir fonksiyonu olur. Bu durum skaler alanlar için en basit örneklerdendir. Sıcaklık alanı, kütleçekimi alanı, hareketli akışkanların yoğunlukları gibi alanlar da benzer skaler alanlardır.

Elektromagnetik alan fizikteki en önemli vektör alanı sayılabilir. Her ikisi de vektör alanı olan elektrik ve magnetik alanlar, durgun olmadıklarında karakteristik bir biçimde etkileşir.
Tensor alanlarına örnek, bir hidrodinamik sistemdeki basınç alanıdır. Bu durum, akışkan içindeki farklı noktaların farklı sıcaklıklarda olduğu karmaşık hareketler sistemine karşılık olur.

Fiziksel sabitler.


Fiziğin temel kuramlarının formülleştirilmesinde ve bunların gerçek dünyaya uygulanmasında temel fiziksel sabitler denilen kimi değişmez nicelikler ortaya çıkar. Bu temel sabitler arasında ışığın vakumdaki (boşluk) hızı (c), temel yük (e), elektronun kütlesi (me), Planck sabiti (h) ve ince yapı sabiti sayılabilir.
Ad:  TemelFizikselSabitler01.jpg
Gösterim: 6555
Boyut:  107.8 KB
Ad:  TemelFizikselSabitler02.jpg
Gösterim: 6655
Boyut:  172.8 KB
Temel sabitlerin sayısal değerlerinin kesin doğrulukla bilinmesi iki nedenle önem taşır.
Fiziğin temel kuramlarının nicel öngörüleri, kuramlardaki sabitlerin sayısal değerlerine bağlıdır. Ayrıca, bu sabitlerin fiziğin farklı alanlarındaki çeşitli deneylerden sağlanan sayısal değerlerinin dikkatle incelenmesi, fizik kuramlarının doğruluğunu ve genel tutarlığını denetleyebilme olanağını verir.

Temel sabitler,


genellikle milyonda birkaç kısımlık doğrulukla ölçülmüştür. Doğruluk niceliğine yüklenen anlam; kuram ya da deneyin sınırlılığı nedeniyle, herhangi bir niceliğin sayısal değerinin, gerçek değerden ne kadar uzak olduğunu gösteren belirsizliğin bağıl boyutudur. Doğruluk ya da belirsizlik, uygulamada milyonda kısım (ppm) olarak gösterilir.

kaynak: Ana Britannica
BEĞEN Paylaş Paylaş
Bu mesajı 2 üye beğendi.
Son düzenleyen Safi; 24 Temmuz 2016 15:26
Şeytan Yaşamak İçin Her Şeyi Yapar....