Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Sohbet (Flash Chat) Forumda Ara

Cebir nedir? Tarihçesi nasıldır?

Bu konu Soru-Cevap forumunda xray tarafından 29 Kasım 2008 (10:15) tarihinde açılmıştır.FacebookFacebook'ta Paylaş
70173 kez görüntülenmiş, 36 cevap yazılmış ve son mesaj 27 Aralık 2013 (13:41) tarihinde gönderilmiştir.
  • 5 üzerinden 3.33  |  Oy Veren: 15      
Cevap Yaz Yeni Konu Aç
Bu konuyu arkadaşlarınızla paylaşın:    « Önceki Konu | Sonraki Konu »      Yazdırılabilir Sürümü GösterYazdırılabilir Sürümü Göster    AramaBu Konuda Ara  
Eski 29 Kasım 2008, 10:15

Cebir nedir? Tarihçesi nasıldır?

#1 (link)
xray
Ziyaretçi
xray - avatarı
cebiri kim buldu lütfen söyleyin
En iyi cevap Keten Prenses tarafından gönderildi

CEBİRİN TARİHİ -

BİZANS'TA CEBİR
Bazı kaynaklar, Bizans'ta ileri bir matematiğin varlığı hakkında geniş bilgi verirler. Ortalama 1000
yıllık hayatı olan Bizans'in, matematik tarihinde, Eski Yunan matematiğini, ilerletip geliştirmesi bakımından, pek parlak bir duruma sahip değildi. Bu devir matematikçileri olarak belirtilen ve aynı zamanda Nikomedya (İzmit) rahibi olan Masimus Planudes (İzmit 1260 - İstanbul 1310), Dio-fantos' un birinci ve ikinci kitaplarına dair sadece tefsir yazabilmiştir. M. Planudes'in en çok bah-sedilen eseri, 1300 yılında yazdığı Hint Hesabı'dır. Planudes; bu eserinde, karekök alma kuralı-nı, Diafantos'un eserini esas almak suretiyle Hint metodunu tatbik etmişti.
14. yüzyılın ikinci yarısından itibaren, 15. yüzyılın ilk yarısına kadar (İstanbul'un fethi yıllarına ka-dar), Bizans matematiğinde bilim tarihinde isim bırakmış matematikçilere rastlanılmaz. Bu tarih-lerde, siyasal olaylar yüzünden, bilim ihmal edilmiştir. Bu tarihlerin ilginç bir olayı, İstanbul'da giz-li kalmış özel kişisel kitaplıkların dışında, elyazması ne kadar eser varsa İtalya'ya götürülmüştür. İstanbul'da el yazmalarına ait hiç bir eser bırakmamışlardır. Givanni Aurispa'nin (1369-1460) Bi-zans'tan Venedik'e 238 el yazması eser götürdüğü tarihi bir olay olarak bilinmektedir.
Bizans matematiğinin durumunu, ayrıntılarıyla incelemiş olan Hamit Dilgan Matematik Tarih ve Tekamülüne Bir Bakış adlı eserinde şöyle yazar : "Bizans'ta tam anlamıyla büyük matematikçi yetişmemiştir. Bir çoğunun eserleri (birkaçı müstesna) mütevazi ve basittir, Hatta bazılarının eser-lerindeki problemlerin, yazarları tarafından anlaşılamadığı seziliyor... Bütün bu hususlar, Eski
Yunan dehasının gerilemiş ve tükenmiş olduğuna canlı birer örnek teşkil eder. Şu kadar var ki,
Bizans matematiği, aynı devrelerdeki Roma matematiğinden çok daha ileri bir durumda olmakla beraber, Doğu İslam Dünyası Matematiğine nazaran çok geri kalmıştı.''
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker


CEBİRİN AVRUPA'DA GÖRÜLMESİ
Matematik tarihi eserleri; yazılan ilk cebir kitabının Harezmi'nin el-Kitabü'l Muhtasar fi Hesabi'l Cebri ve'l Mukabele adlı eseri olduğunu belirtir. Batılı yazarların da belirttikleri gibi, İspanya yo-luyla Avrupa'ya giren ilk cebir kitabı, Harezmi'nin adını belirttiğimiz eseridir. Bu eserde görülen çözüm yolları, İtalyan matematikçi, Leonardo Pisano (1170 - 1250) tarafından yazılmış Liner Aba-cı (Hesap Metodu) adlı kitap ile 1202 yılında İtalya'ya girmiştir. Bu eser, Batılı matematikçilerden; Passioli, Tartiaglie ve Cardon'un çalışmalarına temel eser olmuştur.Öyle ki, bu matematikçilerin eserleri incelendiğinde, Harezmi'ye ait izlerin varlığını görmek müm-kündür. Harezmi'nin eseri ile yukarıda adlarını belirttiğimiz matematikçilerin eserlerini ayrıntılarıy-la incelemiş olan Hamid Dilgan bu konu ile ilgili olarak aynen şunları söyler: "Batılı yazarlar ce-biri, Cebri ve'l Mukabel adlı eserin Latince tercümesinden öğrenmişlerdir." Adnan Adıvar ise bir makalesinde şunları yazar: "G.Libri tarafından, 1915 yılında New - York'ta yapılan tercümenin es-ki Latince nüshanın üzerinde İspanya'da bulunan Sagovia şehrinin adı 1145 yılında yazılı oldu-ğunu belirterek bu tarihe, aynı zamanda Avrupa'da Cebirin Doğuş Tarihi olarak bakmak müm-kündür."
Harezmi'nin bu eseri, temel eser kabul edilerek bu konuda, Avrupa'da cebirle ilgili yeni eserler yazılmış ve Harezmi adı ile eserinin adı kısa sürede yayılmaya başlamıştır.
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker



ESKİ HİNT DÜNYASI'NDA CEBİR
İçinde bulunduğumuz yüzyılın araştırmaları; Eski Hint Dünyası'nda özellikle 6. , 7. , 9. ve 12. yüz-yıllarda, matematikle ilgili olarak, çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışma-ların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen, Hint matematik-çileri, bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan: Brahmagupta, Aryabatha, Mahavra ve Bhaskara adlarını belirtebili-riz. Kaynaklar; Brahmagupta'nın Kutakhadyaka adlı eserinde de, münferit cebir konularının görül-düğünü, ancak bunların düzenli ve ayrıntılı olarak, cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir. Buraya kadar; adlarını belirttiğimiz; Diofantos'un "Aritmetika" ve Brahmagupta'nın Kutakhadyaka adlı iki eserde, ikinci derece denklemlerin çizim yoluyla (geo-metrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli ol-duğunda kaynaklar hemfikirlerdir.
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker
ESKİ MISIRLILAR'DA CEBİR
İnceleyebildiğiniz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, oldukça ilkel cebirin varlığı görülmektedir. Bu konuda aha hesabı adı verilen bir hesaplama türüne rastlanılmaktadır. Bu hesaplama türü hakkında, Aydın Sayılı Mısırlılar'da ve Mezopotamyalılar'-da Matematik, Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;
Aha kelimesi, grup ya da miktar anlamına gelmektedir. Böyle adlandırma, bir metot görüşü olarak yapılmış olmakla beraber, aha hesaplarında, "Yanlış ve Deneme yoluyla Yoklayarak çözüm" metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle, bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair, açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz'a atfen altı örnek belirtmektedir. Bunlar :
x/y = 4/3 ; xy = 12

xy = 40 ; x = (5/2)y

xy = 40 ; x/y = (1/3) + (1/15) = 2/5

10xy = 120 ; y = (3/4)x

x2 + y2 = 100 ; y = (3/4)x

a2 + b2 = 400 ; a = 2x ; b = (3/2)x
Hemen belirtmek gerekir ki; bu örnekler, Mısırlıların aha hesabında yaptıklarının, bugünkü ceb-rik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.
Yukarıdaki altı tip örnekte görülebileceği gibi, problemler hep özel durumları temsil ediyor. An-cak, Aydın Sayılı adı geçen eserinde, bu konuda : "Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin aha hesaplarıyla ilgili papi-rüslerde, herhangi bir metot söz konusu edilmemesine rağmen, bunlarda özel bir metoda uyul-duğu gayet sarih bir şekilde görülmektedir ... Problemlerin pedagojik amaçlarla bu şekilde ter-tiplenmiş oldukları söylenebilir."
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker



ESKİ YUNAN'DA CEBİR
Çoğu kaynaklarda; cebir denildiğinde, Eski Roma çağı Yunan matematikçisi Diofantos'un (225-400) adından bahsedilir. Diofantos'un Aritmetika adlı bir eseri mevcut olup, bu eserde sistematik olmamak üzere, münferit bazı cebir konuları ile birlikte, ikinci derece denklemlerin çözümü görül-mektedir. Ancak, Diofantos devri Yunan matematiği, bazı harf ve semboller ile ifade edilmekte olduğundan, Diofatos'un Jukarda adını belirttiğimiz eseri, Harezmi'deki cebir işaretleri ve sis-temlerinin oynadığı rolden mahrum olması bakımından gerçek anlamda düzenli ve disiplinli bir cebir kitabı olmaktan uzaktır. Kaldı ki; Harezmi'nin Cebri ve'l Mukabele adlı eserinde görülen çö-züm yolları, tamamen geometrik düşüncelerle temellendirilmiş olup, bu tür sistematik çözümü de, cebire ilk ithal edenin, Harezmi olduğu son yüzyıl içinde yapılan araştırmalarla ortaya konulmuş-tur.
Diofantos'ta görülen ikinci derece denklemlerin çözüm metotları, Mezopotamyalılar'ınkine ben-zemektedir. Aydın Sayılı adı geçen eserinde : "Mezopotamyalılarda görülen denklem çözme geleneklerinin, Diofantos'ta devam ettiği görülmektedir. Demek ki Diofantos'taki şekliyle Yunan cebri Mezopotamya cebirirıin hemen hemen, doğrudan doğruya bir devamını, Abdülhamit İbn-i vasi Türk (? - 847) ile Harezmi cebri ise tadil edilmiş bir şekildeki devamını teşkil etmektedir."
Gene adı geçen eserde: Öklid'in Elementler adlı kitabında görülen:
(a+b)2 + (a-b)2 = 2 (a2+b2) veya
2(a2+b2) - (a+b)2 = (a-b)2
şeklindeki özdeşliğin, cebirsel ifadelerin basitleştirilmesi ve çözümlerin kolay tiplere irca edil-mesi için, Mezopotamya matematikçileri tarafından kullanılmış olduğu belirtilir.
MEZOPOTAMYALILAR'DA CEBİR
Eski Mısır (M.Ö. XVIII y.y.) devrine ait papirüslerde, cebir işlemleri gibi yorumlanması mümkün bazı problemlere rastlanmıştır. Fakat Babil matematiği M.Ö. 3000'e kadar çıktığından, bu konu-daki Mısır bilgisine, Babil bilimiyle temas neticesinde varılmış olduğu kabul edilmektedir. Bu-nunla beraber, Babil cebirinin, ne sembolik isaretler yönünden, ne de özellikle negatifsayılar kavramı itibariyle müstakil bir bilim dalı olarak kurulmuş bulunduğunu söylemek mümkün değil-dir. Bu sonuca çok sonraları varılmıştır. M.S. V. - VI. yüzyıllarda, Hind'de, sıfır kavramıyla birlikte, ilk merhale aşılarak, VIII. yüzyıl ortalarından itibaren, İslam bilginleri tarafından yüksek bir merte-beye çıkarılmıştır. Özellikle"El - Cebr v'el Mukabele" adı altında ilk cebir kitabının bir müslüman Türk bilgini olan El - Harezmi'ye ait bulunduğunu söyleyebiliriz. Fakat cebirin, daha M.Ö. 3000'-lerden itibaren, Mezopotamya'da var olmuş ve hayli gelişmil bulunduğu bugün kabul edilmek-tedir.

Bugün bir veya çok bilinmeyenli cebir denklemleriyle çözdüğümüz türden birçok problemlere Babil tabletlerinde rastlanmıştır. Mesela: Bu tablette, bir dikdörtgenin eniyle boyunu veren sayı-lar birbiriyle çarpılır ve bu sayılar arasındaki fark, bu çarpıma eklenirse 153 elde ediliyor. Aynı sayılar birbirine eklenirse 27 çıkıyor. Bu şeklin eni, boyu ve yüzölçümü nedir sorusu soruluyor ve cevap olarak: 20, 7 ve 140 değerleri veriliyor.
Kaynak: Bilimler Tarihi - Celal Saraç
TÜRK - İSLAM DÜNYASI'NDA CEBİR
Objektif olarak hazırlanmış, matematik tarihi eserleri incelendiğinde, açık olarak şu hüküm görü-lür; Matematiğin geniş bir dalı olan cebire ait temel bilgilerin büyük bir çoğunluğu, 8. ile 16. yüzyıl Türk - İslam Dünyası alimleri tarafından ilk olarak ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir.

İslamiyetin Başlangıç Yılları
İslamiyetin başlangıç yıllarında; dini günlerin tespiti, namaz vakitlerinin belirlenmesi, takvim hazır-lanması gibi dini problemlerle uğraşılmış olunduğu muhakkak ise de, o devir İslam matematikçi-lerinin, arazi ölçüleri, veraset hesapları, yükseklik tayini ve günlük yaşantı için gerekli pratik ölç-me ve hesaplamalar hakkında bazı çalışmaların varlığı söz konusu olabilir. Hamid Dilgan; Bü-yük Matematikçi Ömer Hayyam adlı eserinde bu konuda şunları yazar : "İslam matematiği, an-cak hicretin ikinci yüzyıl ortalarında Bağdat'ta doğmuştur." Ancak bu tarihten itibaren, Bağdat'ta kurulan ve bugünkü Üniversitelere benzer kurum olan Dar-ül Hikme'de başta matematik olmak üzere, öteki bilimler hızla gelişmeye başlamıştır.
Gıyasüddin Cemşid ve Cebir
Gıyasuddin Cemşid, aritmetikle ilgili ilmi çalışmalarının yanında, cebirde yüksek dereceden nü-merik denklemlerin yaklaşık çözümlerine, kendi görüşü olarak ortaya koyduğu orjinal çözüm yolları ile, etkinliğini zamanımıza kadar sürdürmüştür. Bu konuda; özellikle; ax3 + x3 = bx tipindeki üçüncü derece denklemlerin çözümünde, zamanı için yeni olan çözüm yolları ortaya koymuştur.
Benzer Konular: Etiketler:
  • cebir tarihi
  • cebirin tarihcesi
  • cebirin tarihi
  • cebirsel ifadelerin tarihcesi
  • cebirsel ifadenin tarihcesi
Rapor Et
Reklam
Eski 29 Kasım 2008, 10:49

Cebir nedir? Tarihçesi nasıldır?

#2 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
CEBİRİN TARİHİ -

BİZANS'TA CEBİR
Bazı kaynaklar, Bizans'ta ileri bir matematiğin varlığı hakkında geniş bilgi verirler. Ortalama 1000
yıllık hayatı olan Bizans'in, matematik tarihinde, Eski Yunan matematiğini, ilerletip geliştirmesi bakımından, pek parlak bir duruma sahip değildi. Bu devir matematikçileri olarak belirtilen ve aynı zamanda Nikomedya (İzmit) rahibi olan Masimus Planudes (İzmit 1260 - İstanbul 1310), Dio-fantos' un birinci ve ikinci kitaplarına dair sadece tefsir yazabilmiştir. M. Planudes'in en çok bah-sedilen eseri, 1300 yılında yazdığı Hint Hesabı'dır. Planudes; bu eserinde, karekök alma kuralı-nı, Diafantos'un eserini esas almak suretiyle Hint metodunu tatbik etmişti.
14. yüzyılın ikinci yarısından itibaren, 15. yüzyılın ilk yarısına kadar (İstanbul'un fethi yıllarına ka-dar), Bizans matematiğinde bilim tarihinde isim bırakmış matematikçilere rastlanılmaz. Bu tarih-lerde, siyasal olaylar yüzünden, bilim ihmal edilmiştir. Bu tarihlerin ilginç bir olayı, İstanbul'da giz-li kalmış özel kişisel kitaplıkların dışında, elyazması ne kadar eser varsa İtalya'ya götürülmüştür. İstanbul'da el yazmalarına ait hiç bir eser bırakmamışlardır. Givanni Aurispa'nin (1369-1460) Bi-zans'tan Venedik'e 238 el yazması eser götürdüğü tarihi bir olay olarak bilinmektedir.
Bizans matematiğinin durumunu, ayrıntılarıyla incelemiş olan Hamit Dilgan Matematik Tarih ve Tekamülüne Bir Bakış adlı eserinde şöyle yazar : "Bizans'ta tam anlamıyla büyük matematikçi yetişmemiştir. Bir çoğunun eserleri (birkaçı müstesna) mütevazi ve basittir, Hatta bazılarının eser-lerindeki problemlerin, yazarları tarafından anlaşılamadığı seziliyor... Bütün bu hususlar, Eski
Yunan dehasının gerilemiş ve tükenmiş olduğuna canlı birer örnek teşkil eder. Şu kadar var ki,
Bizans matematiği, aynı devrelerdeki Roma matematiğinden çok daha ileri bir durumda olmakla beraber, Doğu İslam Dünyası Matematiğine nazaran çok geri kalmıştı.''
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker


CEBİRİN AVRUPA'DA GÖRÜLMESİ
Matematik tarihi eserleri; yazılan ilk cebir kitabının Harezmi'nin el-Kitabü'l Muhtasar fi Hesabi'l Cebri ve'l Mukabele adlı eseri olduğunu belirtir. Batılı yazarların da belirttikleri gibi, İspanya yo-luyla Avrupa'ya giren ilk cebir kitabı, Harezmi'nin adını belirttiğimiz eseridir. Bu eserde görülen çözüm yolları, İtalyan matematikçi, Leonardo Pisano (1170 - 1250) tarafından yazılmış Liner Aba-cı (Hesap Metodu) adlı kitap ile 1202 yılında İtalya'ya girmiştir. Bu eser, Batılı matematikçilerden; Passioli, Tartiaglie ve Cardon'un çalışmalarına temel eser olmuştur.Öyle ki, bu matematikçilerin eserleri incelendiğinde, Harezmi'ye ait izlerin varlığını görmek müm-kündür. Harezmi'nin eseri ile yukarıda adlarını belirttiğimiz matematikçilerin eserlerini ayrıntılarıy-la incelemiş olan Hamid Dilgan bu konu ile ilgili olarak aynen şunları söyler: "Batılı yazarlar ce-biri, Cebri ve'l Mukabel adlı eserin Latince tercümesinden öğrenmişlerdir." Adnan Adıvar ise bir makalesinde şunları yazar: "G.Libri tarafından, 1915 yılında New - York'ta yapılan tercümenin es-ki Latince nüshanın üzerinde İspanya'da bulunan Sagovia şehrinin adı 1145 yılında yazılı oldu-ğunu belirterek bu tarihe, aynı zamanda Avrupa'da Cebirin Doğuş Tarihi olarak bakmak müm-kündür."
Harezmi'nin bu eseri, temel eser kabul edilerek bu konuda, Avrupa'da cebirle ilgili yeni eserler yazılmış ve Harezmi adı ile eserinin adı kısa sürede yayılmaya başlamıştır.
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker



ESKİ HİNT DÜNYASI'NDA CEBİR
İçinde bulunduğumuz yüzyılın araştırmaları; Eski Hint Dünyası'nda özellikle 6. , 7. , 9. ve 12. yüz-yıllarda, matematikle ilgili olarak, çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışma-ların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen, Hint matematik-çileri, bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan: Brahmagupta, Aryabatha, Mahavra ve Bhaskara adlarını belirtebili-riz. Kaynaklar; Brahmagupta'nın Kutakhadyaka adlı eserinde de, münferit cebir konularının görül-düğünü, ancak bunların düzenli ve ayrıntılı olarak, cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir. Buraya kadar; adlarını belirttiğimiz; Diofantos'un "Aritmetika" ve Brahmagupta'nın Kutakhadyaka adlı iki eserde, ikinci derece denklemlerin çizim yoluyla (geo-metrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli ol-duğunda kaynaklar hemfikirlerdir.
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker
ESKİ MISIRLILAR'DA CEBİR
İnceleyebildiğiniz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, oldukça ilkel cebirin varlığı görülmektedir. Bu konuda aha hesabı adı verilen bir hesaplama türüne rastlanılmaktadır. Bu hesaplama türü hakkında, Aydın Sayılı Mısırlılar'da ve Mezopotamyalılar'-da Matematik, Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;
Aha kelimesi, grup ya da miktar anlamına gelmektedir. Böyle adlandırma, bir metot görüşü olarak yapılmış olmakla beraber, aha hesaplarında, "Yanlış ve Deneme yoluyla Yoklayarak çözüm" metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle, bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair, açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz'a atfen altı örnek belirtmektedir. Bunlar :
x/y = 4/3 ; xy = 12

xy = 40 ; x = (5/2)y

xy = 40 ; x/y = (1/3) + (1/15) = 2/5

10xy = 120 ; y = (3/4)x

x2 + y2 = 100 ; y = (3/4)x

a2 + b2 = 400 ; a = 2x ; b = (3/2)x
Hemen belirtmek gerekir ki; bu örnekler, Mısırlıların aha hesabında yaptıklarının, bugünkü ceb-rik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.
Yukarıdaki altı tip örnekte görülebileceği gibi, problemler hep özel durumları temsil ediyor. An-cak, Aydın Sayılı adı geçen eserinde, bu konuda : "Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin aha hesaplarıyla ilgili papi-rüslerde, herhangi bir metot söz konusu edilmemesine rağmen, bunlarda özel bir metoda uyul-duğu gayet sarih bir şekilde görülmektedir ... Problemlerin pedagojik amaçlarla bu şekilde ter-tiplenmiş oldukları söylenebilir."
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker



ESKİ YUNAN'DA CEBİR
Çoğu kaynaklarda; cebir denildiğinde, Eski Roma çağı Yunan matematikçisi Diofantos'un (225-400) adından bahsedilir. Diofantos'un Aritmetika adlı bir eseri mevcut olup, bu eserde sistematik olmamak üzere, münferit bazı cebir konuları ile birlikte, ikinci derece denklemlerin çözümü görül-mektedir. Ancak, Diofantos devri Yunan matematiği, bazı harf ve semboller ile ifade edilmekte olduğundan, Diofatos'un Jukarda adını belirttiğimiz eseri, Harezmi'deki cebir işaretleri ve sis-temlerinin oynadığı rolden mahrum olması bakımından gerçek anlamda düzenli ve disiplinli bir cebir kitabı olmaktan uzaktır. Kaldı ki; Harezmi'nin Cebri ve'l Mukabele adlı eserinde görülen çö-züm yolları, tamamen geometrik düşüncelerle temellendirilmiş olup, bu tür sistematik çözümü de, cebire ilk ithal edenin, Harezmi olduğu son yüzyıl içinde yapılan araştırmalarla ortaya konulmuş-tur.
Diofantos'ta görülen ikinci derece denklemlerin çözüm metotları, Mezopotamyalılar'ınkine ben-zemektedir. Aydın Sayılı adı geçen eserinde : "Mezopotamyalılarda görülen denklem çözme geleneklerinin, Diofantos'ta devam ettiği görülmektedir. Demek ki Diofantos'taki şekliyle Yunan cebri Mezopotamya cebirirıin hemen hemen, doğrudan doğruya bir devamını, Abdülhamit İbn-i vasi Türk (? - 847) ile Harezmi cebri ise tadil edilmiş bir şekildeki devamını teşkil etmektedir."
Gene adı geçen eserde: Öklid'in Elementler adlı kitabında görülen:
(a+b)2 + (a-b)2 = 2 (a2+b2) veya
2(a2+b2) - (a+b)2 = (a-b)2
şeklindeki özdeşliğin, cebirsel ifadelerin basitleştirilmesi ve çözümlerin kolay tiplere irca edil-mesi için, Mezopotamya matematikçileri tarafından kullanılmış olduğu belirtilir.
MEZOPOTAMYALILAR'DA CEBİR
Eski Mısır (M.Ö. XVIII y.y.) devrine ait papirüslerde, cebir işlemleri gibi yorumlanması mümkün bazı problemlere rastlanmıştır. Fakat Babil matematiği M.Ö. 3000'e kadar çıktığından, bu konu-daki Mısır bilgisine, Babil bilimiyle temas neticesinde varılmış olduğu kabul edilmektedir. Bu-nunla beraber, Babil cebirinin, ne sembolik isaretler yönünden, ne de özellikle negatifsayılar kavramı itibariyle müstakil bir bilim dalı olarak kurulmuş bulunduğunu söylemek mümkün değil-dir. Bu sonuca çok sonraları varılmıştır. M.S. V. - VI. yüzyıllarda, Hind'de, sıfır kavramıyla birlikte, ilk merhale aşılarak, VIII. yüzyıl ortalarından itibaren, İslam bilginleri tarafından yüksek bir merte-beye çıkarılmıştır. Özellikle"El - Cebr v'el Mukabele" adı altında ilk cebir kitabının bir müslüman Türk bilgini olan El - Harezmi'ye ait bulunduğunu söyleyebiliriz. Fakat cebirin, daha M.Ö. 3000'-lerden itibaren, Mezopotamya'da var olmuş ve hayli gelişmil bulunduğu bugün kabul edilmek-tedir.

Bugün bir veya çok bilinmeyenli cebir denklemleriyle çözdüğümüz türden birçok problemlere Babil tabletlerinde rastlanmıştır. Mesela: Bu tablette, bir dikdörtgenin eniyle boyunu veren sayı-lar birbiriyle çarpılır ve bu sayılar arasındaki fark, bu çarpıma eklenirse 153 elde ediliyor. Aynı sayılar birbirine eklenirse 27 çıkıyor. Bu şeklin eni, boyu ve yüzölçümü nedir sorusu soruluyor ve cevap olarak: 20, 7 ve 140 değerleri veriliyor.
Kaynak: Bilimler Tarihi - Celal Saraç
TÜRK - İSLAM DÜNYASI'NDA CEBİR
Objektif olarak hazırlanmış, matematik tarihi eserleri incelendiğinde, açık olarak şu hüküm görü-lür; Matematiğin geniş bir dalı olan cebire ait temel bilgilerin büyük bir çoğunluğu, 8. ile 16. yüzyıl Türk - İslam Dünyası alimleri tarafından ilk olarak ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir.

İslamiyetin Başlangıç Yılları
İslamiyetin başlangıç yıllarında; dini günlerin tespiti, namaz vakitlerinin belirlenmesi, takvim hazır-lanması gibi dini problemlerle uğraşılmış olunduğu muhakkak ise de, o devir İslam matematikçi-lerinin, arazi ölçüleri, veraset hesapları, yükseklik tayini ve günlük yaşantı için gerekli pratik ölç-me ve hesaplamalar hakkında bazı çalışmaların varlığı söz konusu olabilir. Hamid Dilgan; Bü-yük Matematikçi Ömer Hayyam adlı eserinde bu konuda şunları yazar : "İslam matematiği, an-cak hicretin ikinci yüzyıl ortalarında Bağdat'ta doğmuştur." Ancak bu tarihten itibaren, Bağdat'ta kurulan ve bugünkü Üniversitelere benzer kurum olan Dar-ül Hikme'de başta matematik olmak üzere, öteki bilimler hızla gelişmeye başlamıştır.
Gıyasüddin Cemşid ve Cebir
Gıyasuddin Cemşid, aritmetikle ilgili ilmi çalışmalarının yanında, cebirde yüksek dereceden nü-merik denklemlerin yaklaşık çözümlerine, kendi görüşü olarak ortaya koyduğu orjinal çözüm yolları ile, etkinliğini zamanımıza kadar sürdürmüştür. Bu konuda; özellikle; ax3 + x3 = bx tipindeki üçüncü derece denklemlerin çözümünde, zamanı için yeni olan çözüm yolları ortaya koymuştur.
Rapor Et
Eski 29 Kasım 2008, 10:50

Cebir nedir? Tarihçesi nasıldır?

#3 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
cebir tarihi




Eski Mısırlılar'da Cebirİnceleyebildiğiniz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, oldukça ilkel cebirin varlığı görülmektedir. Bu konuda a h a h e s a b ı adı verilen bir hesaplama türüne raslanlmaktadır. Bu hesaplama türü hakkında, Aydın Sayılı Mısırlılarda ve Mezopotamyalılarda Matematik, Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;
A h a kelimesi, grup ya da miktar anlamına gelmektedir. Böyle adlandırma, bir metot görüşü olarak yapılmış olmakla beraber, a h a hesaplarında, "Yanlış ve Deneme yoluyla Yoklayarak çözüm" metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle, bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair, açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz'a atfen altı örnek belirtmektedir. Bunlar :

1) x/y = 4/3 ; xy = 12

2) xy = 40 ; x = (5/2)y

3) xy = 40 ; x/y = (1/3) + (1/15) = 2/5

4) 10xy = 120 ; y = (3/4)x

5) x2 + y2 = 100 ; y = (3/4)x

6) a2 + b2 = 400 ; a = 2x ; b = (3/2)x

Hemen belirtmek gerekir ki; bu örnekler, Mısırlıların a h a hesabında yaptıklarının, bugünkü cebrik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.
Yukarıdaki altı tip örnekte görülebileceği gibi, problemler hep özel durumları temsil ediyor. Ancak, Aydın Sayılı adı geçen eserinde, bu konuda : "Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin a h a hesaplarıyla ilgili papirüslerde, herhangi bir metot söz konusu edilmemesine rağmen, bunlarda özel bir metoda uyulduğu gayet sarih bir şekilde görülmektedir ... Problemlerin pedagojik amaçlarla bu şekilde tertiplenmiş oldukları söylenebilir."

Mezopotamyalılar'da Cebir Mezopotamya Matematiğinin gelişmiş bir durumda olan dalı da cebirdir. Kaynaklar; "Mezopotamya Matematiğinde" gelişmiş bir cebir bilgisinin var olduğunu belirtmekte, bunun sonucu olarak da, bugünkü cebirin kurucuları olarak Mezopotamyalıları göstermektedir.
Mezopotamya cebirinin gelişim tarihini üç safhaya ayırabiliriz. Bunlar :
a) Retorik Safha :
Bu safhada; bütün ayrıntılar normal cümleler halinde sözlü olarak belirtilmekte,
b) Kısaltma Safhası :
Bu safhada, yer yer kısaltmalar, klişe ifadeler ve semboller kullanılmakla beraber, yine sözlü ifadeler az çok hakim durumda kalmakta.
c) Sembolik Safha :
Bu safhada; a, b, x, y2, (=), ve (+) gibi sembol ve işaretler kullanarak, her şey sembolik denklemler ve münasebetler vasıtasıyla ifade edilmektedir.
Aydın Sayılı adı geçen eserinde "Mezopotamya Cebri" nin retorik safhada olduğunu belirtmekte ve şu bilgileri vermektedir.
" Mezopotamya cebir problemlerini ve çözümlerini ihtiva eden tabletlerde genellikle özel problemlerle ve bunların çözüm yolları ve çözüm sonuçları ile karşılaşıyoruz. Birinci derece denklemlerin çözümü Mezopotamyalılar için oldukça basit bir meseleydi. İkinci derece denklemleri ayrıntılı bir şekilde inceledikleri ve bu denklemlerin çözümlerinde büyük yetenek gösterdikleri görülmektedir. Metinlerde, bazen üçüncü derece denklemleriyle de karşılaşılıyor. Üçüncü derece denklemlerin bazı basit tiplerini çözümleyebiliyorlardı. Bu çözümlerde bir takım özel cetvellerden yararlanmış oldukları anlaşıldığı gibi, bazı örneklerin çözümünde tesadüfün de rolü olmuş olabilir. Ayrıca yoklama ve deneme suretiyle sonucun elde edilmesinden yararlanmış olabilirler. Genellikle, ikinciden daha yüksek dereceden denklemlerin ikinci dereceye indirgenmesi mümkün olanlarını çözümleyebiliyorlardı. Bu gibi çözümlerde derecenin indirilmesi için yardımcı bilinmeyenlerin kullanılması metodundan geniş ölçüde faydalanıyorlardı."

Eski Yunan'da Cebir Çoğu kaynaklarda; cebir denildiğinde, Eski Roma çağı Yunan matematikçisi Diofantos'un (225-400) adından bahsedilir. Diofantos'un Aritmetika adlı bir eseri mevcut olup, bu eserde sistematik olmamak üzere, münferit bazı cebir konuları ile birlikte, ikinci derece denklemlerin çözümü görülmektedir. Ancak, Diofantos devri Yunan matematiği, bazı harf ve semboller ile ifade edilmekte olduğundan, Diofatos'un Jukarda adını belirttiğimiz eseri, Harezmi'deki cebir işaretleri ve sistemlerinin oynadığı rolden mahrum olması bakımından gerçek anlamda düzenli ve disiplinli bir cebir kitabı olmaktan uzaktır. Kaldı ki; Harezmi'nin Cebri ve'l Mukabele adlı eserinde görülen çözüm yolları, tamamen geometrik düşüncelerle temellendirilmiş olup, bu tür sistematik çözümü de, cebire ilk ithal edenin, Harezmi olduğu son yüzyıl içinde yapılan araştırmalarla ortaya konulmuştur.
Diofantos'ta görülen ikinci derece denklemlerin çözüm metotları, Mezopotamyalılarınkine benzemektedir. Aydın Sayılı adı geçen eserinde : "Mezopotamyalılarda görülen denklem çözme geleneklerinin, Diofantos'ta devam ettiği görülmektedir. Demek ki Diofantos'taki şekliyle Yunan cebri Mezopotamya cebirirıin hemen hemen, doğrudan doğruya bir devamını, Abdülhamit ibn-i vasi Türk (? - 847) ile Harezmi cebri ise tadil edilmiş bir şekildeki devamını teşkil etmektedir." Gene adı geçen eserde: Öklid'in Elementler adlı kitabında görülen:
(a+b)2 + (a-b)2 = 2 (a2+b2) veya
2(a2+b2) - (a+b)2 = (a-b)2 şeklindeki özdeşliğin, cebirsel ifadelerin basitleştirilmesi ve çözümlerin kolay tiplere irca edilmesi için, Mezopotamya matematikçileri tarafından kullanılmış olduğu belirtilir.

Eski Hint Dünyası'nda Cebir İçinde bulunduğumuz yüzyılın araştırmaları; Eski Hint Dünyasında, özellikle 6., 7., 9. ve 12. yüzyıllarda, matematikle ilgili olarak, çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışmaların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen, Hint matematikçileri, bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan : Brahmagupta (598-660), Aryabatha (6. yüzyıl), Mahavra (9. yüzyıl) ve Bhaskara'nın (1114-1158) adlarını belirtebiliriz.
Kaynaklar; Brahmagupta'nın Kutakhadyaka adlı eserinde de, münferit cebir konularının görüldüğünü, ancak bunların düzenli ve ayrıntılı olarak, cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir.
Buraya kadar; adlarını belirttiğimiz, Diofantos'un Aritmetika ve Brahmagupta'nın Kutakhadyaka adlı iki eserde, ikinci derece denklemlerin çizim yoluyla (geometrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli olduğunda kaynaklar hemfikirdirler.

Bizans'ta Cebir Bazı kaynaklar, Bizans'ta ileri bir matematiğin varlığı hakkında geniş bilgi verirler. Ortalama 1000 yıllık hayatı olan Bizans'ın, matematik tarihinde, Eski Yunan matematiğini, ilerletip geliştirmesi bakımından, pek parlak bir duruma sahip değildi. Bu devir matematikçileri olarak belirtilen ve aynı zamanda Nikomedya (İzmit) rahibi olan Masimus Planudes (İzmit 1260 -İstanbul 1310), Diofantos'un birinci ve ikinci kitaplarına dair sadece tefsir yazabilmiştir. M. Planudes'in en çok bahsedilen eseri, 1300 yılında yazdığı Hint Hesabı'dır. Planudes; bu eserinde, karekök alma kuralını, Diofantos'un eserini esas almak suretiyle Hint metodunu tatbik etmişti.
14. yüzyılın ikinci yarısından itibaren, 15. yüzyılın ilk yansına kadar (İstanbul'un fethi yıllarına kadar), Bizans matematiğinde bilim tarihinde isim bırakmış matematikçilere rastlanılmaz. Bu tarihlerde, siyasal olaylar yüzünden, bilim ihmal edilmiştir. Bu tarihlerin ilginç bir olayı, İstanbul'da gizli kalmış özel kişisel kitaplıkların dışında, elyazması (manüskrit) ne kadar eser varsa İtalya'ya götürülmüştür. İstanbul'da elyazmalarına ait hiç bir eser bırakmamışlardır. Givanni Aurispa'nın (1369-1460) Bizans'tan Venedik'e 238 elyazması eser götürdüğü tarihi bir olay olarak bilinmektedir.
Bizans matematiğinin durumunu, ayrıntılarıyla incelemiş olan Hamit Dilgan Matematik Tarih ve Tekamülüne Bir Bakış adlı eserinde şöyle yazar : "Bizans'ta tam anlamıyla büyük matematikçi yetişmemiştir. Birçoğunun eserleri (birkaçı müstesna) mütevazı ve basittir, Hatta bazılarının eserlerindeki problemlerin, yazarları tarafından anlaşılamadığı seziliyor... Bütün bu hususlar, Eski Yunan dehasının gerilemiş ve tükenmiş olduğuna canlı birer örnek teşkil eder. Şu kadar var ki, Bizans matematiği, aynı devrelerdeki Roma matematiğinden çok daha ileri bir durumda olmakla beraber, Doğu İslam Dünyası Matematiğine nazaran çok geri kalmıştı.''
Rapor Et
Eski 21 Aralık 2008, 14:54

cebir

#4 (link)
ziyaretçi
Ziyaretçi
ziyaretçi - avatarı
cebir alanında çalışmalar yapan bilim adamları kimlerdir?
Rapor Et
Eski 21 Aralık 2008, 15:06

Cebir nedir? Tarihçesi nasıldır?

#5 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
ULUĞ BEY

Dünyaca ünlü Türk matematikçisi ve astronomi bilgini olan hükümdardır. 22 Mart 1395 tarihinde Semerkant'ta doğdu. Timurlenk'in torunlarından olup hükümdar Muînüddin Şah Ruh'un oğludur. Asıl adı Mehmet Torgay'dır.
13 yaşında iken Horasan ve Maveraünnehir eyaletlerine hakan naibi oldu. 1446 yılında babasının ölümü üzerine hükümdar oldu. Saltanat yılları sırasında matematik ve astronomi ile yakından ilgilendi. Astronomiye ait tablosu yıllar sonra İngiltere ve Fransa'da basıldı. 1449 yılında kendisine isyan eden oğlu Abdüllatif Mirza tarafından 54 yaşında iken öldürüldü.

Uluğ Bey, babası Şah Ruh ölünce, 1446’da hükümdar oldu. İlk işi olarak devletini güçlendirerek ülkesini parçalanmaktan kurtardı.
Uluğ Bey hakan olunca, Osmanlı Devleti ile münasebetlerini sıklaştırmaya ve geliştirmeye gayret etti. İki Türk ülkesi arasında elçiler, bilim adamları gidip gelmeye başladı. O, savaştan çok kendisini bilime adamış bir hükümdardı. Sarayına zamanın bilginlerini topladı ve onları korudu. İnceleme için Çin’e kadar heyetler gönderdi. Uluğ Bey Semerkant’ta bir medrese, bir de rasathane yaptırdı. Astronomi ilminin gelişmesine çalıştı. Bu rasathane orta çağdaki astronomi bilgisini en yüksek düzeye ulaştırdı.

Uluğ Bey, tarihe adını “Asya Fâtihi” diye yazdıran Büyük Cihangir Timurlenk'in öz torunuydu. Ama dedesinin askerlik ve savaşçılık açısından hiçbir huyu onda görülmüyordu. Dedesi, çolak eli ve topal bacağına rağmen, at üzerinde kılıç sallayıp, ülkeler fethetmişti. Fakat, Uluğ Bey'in yeryüzünde bir karış toprak bile fethetmek gibi bir ihtirası yoktu. Onun bütün merak ve hevesi, yeryüzünde değil, gökyüzündeydi. Ülkeler fethetmekten ziyade, gökyüzü âleminde araştırmalar yapmayı, gök kubbenin sırrını çözmeye çalışmayı tercih ediyordu.

Uluğ Bey'in ilim adamı oluşunda, yaradılışının büyük rolü olduğu kadar, babası şah Ruh'un da büyük payı vardı. Çünkü, Şah Ruh, güzel sanatlara hayran bir kişiydi. İlme ve bilginlere büyük değer verirdi. Onun Horasan'ın başkenti olan Meşhed'de yaptırdığı cami bir şaheserdi.
Uluğ Bey de, Herat'ta güzel bir köşk yaptırmış, bu köşkün duvarlarını ve tavanlarını, birer sanat âbidesi niteliğindeki tablolarla süsletmişti. İktidarı döneminde, Başta Semerkant ve Buhara olmak üzere tüm ülke, Türk mimarisinin seçkin eserleriyle donatıldı.

Fen bilimleri ve astronomiye merakı, ileride kendisini, dünya tarihinin en büyük astronomlarından biri haline getirdi. İlim adamlığı yanında devlet adamlığı vasfı da yüksek olan Uluğ Bey, Semerkant’ta 38 yıl hükümdarlık yaptı. Bir akademi haline getirdiği sarayı, devrin meşhur alimlerinin toplanıp bilimsel tartışmalar yaptığı ve eserler hazırladığı bir mekan oldu.

Matematikçi, astronom, tarihçi ve şair olan Uluğ Bey, Mesud el-Kâşî, Bursalı Kadızade Rûmî, Ali bin Muhammed (Ali Kuşçu) gibi bilginleri sarayına topladı. Semerkant medrese ve rasathanesini büyüttü ve yeni aletlerle donattı.
Uluğ Bey zamanında yeni astronomi aletleri yapılmış, eski aletler geliştirilmişti. IX. ve X. yüzyılda bir usturlab ile ancak 43 işlem yapılırken, Uluğ Bey zamanında geliştirilen usturlab, 1000’den fazla işlem yapıyordu. Uluğ Bey’in usturlabının çapı 40 metre idi.
Uluğ Bey, bu arada gökyüzünün bir de haritasını yapmayı başarmıştı. Bu gökyüzü haritası, kendisinden sonra gelecek nesillere astronomi çalışmalarında ışık tutacak, onlara rehber olacaktı.
Uluğ Bey, astronomi çalışmalarının temelini teşkil eden trigonometri ilmi üzerinde de geniş çalışmalar yaptı. Kendisinden önceki Doğu ve Batı dünyasının tahmini bilgilerini bir kenara bırakıp, bilimsel esasları tespit ederek, trigonometride yeni bir araştırma yolu açtı. Dünya onu, astronomi alanındaki eseriyle tanıdı. Semerkant’taki rasathanesinde yapılan çalışmalar, bugünkü astronomiye hala ışık tutmaktadır
Zîc-i Ulûgî denilen cetveli, diğer ilmî eserleri ve rasatları, akademiden farkı olmayan sarayındaki çalışmalarının sonucudur. Zîc-i Ulûgî, diğer adı “Gûrgânî Takvimi” olan bu cetvel, o devrin ilmî esaslara dayanan yegâne takvimi sayılmaktadır.

Bu eser, daha önce yazılan ‘zîc’lerin yanlışlarını düzeltiyor ve yıldızların hareketini daha mükemmel gösteriyordu.Zîc-i Ulûgî, 1655 yılında İngiltere'de Oxford şehrinde İngilizce, 1853’te de Fransızca olarak basıldı. Daha sonra da çeşitli dillere tercüme edildi. Batı bilim dünyası, Uluğ Bey’e “XV. yüzyıl Astronomu” unvanını layık görürken, Milletrerarası Astronomi Derneği de Ay yüzeyindeki bir kratere onun adını verdi. Beş ülkenin astronomlarından ve özellikle Ay’a uydu gönderen ülkelerin uzmanlarından oluşan bir komisyonun hazırladığı Ay Haritasında, üç Türk astronomunun adları da yer alır. Büyük bir kratere Uluğ Bey adı verilmiştir. Ay atlasında adları bulunan diğer iki Türk bilgini, Bîrûnî ve Nasireddîn Tûsî’dir.

Kozmografya konusunda yazdığı bir kitap da günümüze kadar, birçok ilmî araştırmalara kaynak olmuştur. Tarihin en âlim olduğu kadar en âdil bir hükümdarı olarak da tanınan Uluğ Bey, aynı zamanda kötü talihli bir hükümdardı. Oğlu Abdüllatif Mirza, babasına baş kaldırmış ve gözünü tahta dikerek işi bir iç savaşa kadar ***ürmüştü. Bu savaşta ağırlığını ortaya koyan Uluğ Bey, oğlu Abdüllatif Mirza kumandasındaki âsileri yenmeyi başarmıştı. Bu iç savaş sonunda Abdüllatif Mirza da esir düşmüştü. Uluğ Bey, dedesi Timurlenk gibi katı yürekli bir insan değildi. Asi evlâdını bağışladı, kendisine nasihatte bulundu. Bu konuda bir hükümdar olarak değil de, yüreği evlât sevgisiyle dolu hassas bir baba olarak düşünmüş ve ona göre hareket etmişti.

Fakat oğlu Abdüllatif Mirza, o iyi yürekli, âlim ve kâmil babanın oğlu değilmiş gibi, Uluğ Bey ile taban tabana zıt karakter taşıyan bir insandı. Babasına baş kaldırıp yenilmesinden sonra, onun verdiği manevî dersi alamamıştı. Serbest kalır kalmaz derhal yeni bir darbenin hazırlıklarına koyuldu. Bu kez geçen seferkinden daha kuvvetli bir ordu toplayıp başarı kazanmak için ne gerekirse yaptı. Ve bütün hazırlıklarını tamamladıktan sonra babası Uluğ Bey'e tekrar baş kaldırdı ve onun üzerine tekrar saldırdı.
Bu ikinci iç savaşta şans hiç de Uluğ Bey'e gülmedi. Doğrusunu söylemek gerekirse, affettiği oğlunun kendisine karşı yeniden bir hücuma girişeceğine ihtimâl vermiyordu âlim baba.Uluğ Bey fena halde gafil avlanmıştı. Emrindeki kuvvetler yenildi. Her şey tamamen tersine gelişti; bu kez 54 yaşındaki baba, âsi oğlunun eline esir düştü.Uluğ Bey, oğluna göstermiş olduğu anlayış ve merhameti ne yazık ki ondan göremedi. İsyankâr evlât, savaşın galibi kumandan olarak, babasını 25 Ekim 1449 tarihinde ölüme mahkûm etti.

Dünyanın en ünlü matematikçisi ve astronomi bilgini olan Uluğ Bey, bir hükümdardan ziyade bir baba için en acı son ile hayatını kaybetti ve dedesi Timur Han’ın yanına defnedildi.
Rapor Et
Eski 21 Aralık 2008, 15:07

Cebir nedir? Tarihçesi nasıldır?

#6 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
Cahit Arf (1910-1997)

PERŞEMBE 26 NİSAN 2007 123456789101112............
Ülkemizde matematiğin simgesi haline gelen Cahit ARF 1910 yılında Selanik’te doğdu. 1932 yılında Galatasaray Lisesi’nde matematik öğretmenliği, 1933 yılında İstanbul Üniversitesi Fen Fakültesi’nde profesör yardımcısı (Doçent adayı ) olmuştur. Doktorasını 1938 yılında Almanya’da Göttingen Üniversitesi’nde tamamladı. Daha sonra İstanbul Üniversitesi’ne dönen ARF, 1943 de profesör, 1955’de Ordinaryus Profesör oldu.1964-1965 yılları arasında Fransa’da bulunan Princiton’daki Yüksek Araştırma Enstitüsü’nde konuk öğretim üyesi olarak görev yaptı.

1938 yılından beri Cahit ARF cebir, sayılar teorisi, elastisite teorisi, analiz, geometri ve mühendislik matematiği gibi çok çeşitli alanlarda yaptığı çalışmalarla matematiğe temel katkılarda bulunmuş, yapısal ve kalıcı sonuçlar elde etmiştir.

Bütün Türk matematikçilerine dolaylı veya dolaysız bir şekilde esin kaynağı olmuş, yaptığı uyarılar ve verdiği fikirlerle çevresindeki tüm matematikçilerin ufuklarını genişletmiş ve çalışmalarını yeni bir bakış açısıyla yönlendirmelerini sağlamıştır.

Cahit ARF’ ın ilk çalışması, 1939 yılında Almanya’nın ünlü bir matematik dergisi olan Crelle Journal Dergisi’nde yayınlanmıştır. Cahit ARF çözülebilen cebirsel denklemlerin bir listesini yapmak amacıyla Göttingen’de ünlü matematikçi Hasse’nin doktora öğrencisi oldu. Hasse’nin önerisiyle özel haller problemini çözdü. Cahit ARF bu çalışmasıyla sayılar teorisinde çok özel bir yeri olan lokal cisimlerde dallanma teorisine çok önemli yapısal bir katkıda bulunmuştur. Burada bulduğu sonuçlardan bir bölümü dünya matematik literatüründe “Hasse-Arf Teoremi”olarak geçmektedir.

Bundan sonra uğraştığı problem, matematikte “kuadratik formlar” olarak bilinen konudadır. Uzayda konisel yüzey denklemleri buna basit bir örnek olarak gösterilebilir. Bu konudaki temel problem, kuadratik formların bir takım invaryantlar, yani değişmezler yardımıyla sınıflandırılmasıdır. Bu sınıflandırma Witt adında ünlü bir Alman matematikçi tarafından karekteristiği ikiden farklı olan cisimler için 1937 de yapılmıştır. Karekteristik iki olunca problem çok daha zorlaşıyor ve Witt’in yöntemi uygulanamıyordu. Cahit ARF bu problemle uğraştı ve karekteristiği iki olan cisimler üzerindeki kuadratik formları çok iyi bir biçimde sınıflandırdı. Bunların invaryantlarını, yani değişmezlerini inşa etti. Bu invaryantlar dünya literatüründe “Arf İnvaryantları” olarak geçmektedir. Bu çalışması 1944 yılında Crelle Dergisi’nde yayınlandı ve Cahit ARF ‘ı dünyaya tanıttı.

1945’lere gelindiğinde düzlem bir eğrinin herhangi bir kolundaki çok kat noktaların çok katlılıklarının yalnız aritmetiğe ait bir yöntem ile nasıl hesaplanacağı iyi bilinmekteydi. Düzlem halde algoritmanın başladığı sayılar eğri kolunun parametreli denklemlerinden bilinen bir kanuna göre elde ediliyordu. Genel durumda ise böyle bir sonuç henüz bulunamamıştı. Bu sıralarda İstanbul’da Patrick Du Val adında bir İngiliz matematikçi bulunuyordu. Du Val genel halde algoritmanın başladığı sayılara “karakter” adını vermiş ve eğrinin tüm geometrik özellikleri bilindiği zaman bu karakterlerin nasıl bulunacağını göstermişti. Bunun tersi de doğruydu. Bu karakter bilinirse, eğrinin çok katlılık dizisi, yani geometrik özellikleri de bulunabiliyordu. Burada açık kalan problem ise bir eğrinin denklemleri verildiğinde karakterlerini bulabilmek idi. Cevap düzlem eğriler için bilinmekte, ama yüksek boyutlu uzaylarda bulunan tekil eğriler için bilinmemekte idi. Ayrıca, yüksek boyutlu bir uzayda tanımlanmış bir tekil eğrinin çok katlılık özelliklerini, yani geometrik özelliklerini bozmadan en düşük kaç boyutlu uzaya sokulabileceği de bu problemle beraber düşünülen bir soru idi. Bu çeşit sorular matematiksel bakış açısının temel problemi olan sınıflandırma probleminin eğrilere uygulanması bakımından son derece önemli ve zor sorulardı. Cahit ARF bu problemi 1945’de tamamı ile çözmüş ve tek boyutlu tekil cebirsel kolların sınıflandırılması problemini kapatmıştır. Bu sonucun zorluğu hakkında fikir elde edebilmek için düzgün varyetelerin sınıflandırılması probleminin bugüne kadar 1,2 ve kısmen 3 boyutlu varyeteler için çözüldüğünü tekilliklerinin sınıflandırılması probleminin ise 1 boyutlu varyeteler, eğriler için Cahit ARF tarafından çözüldüğünü göz önüne almak gerekir. Cahit ARF bu problemi çözerken önemini gözlediği ve problemin çözümünde en önemli rolü oynadığını fark ettiğini bazı halkalara “karekteristik halka” adını vermiş ve daha sonra gelen yabancı araştırmacılar bu halkalara “Arf Halkaları” ve bunların kapanışlarına “Arf Kapanışları” adını vermişlerdir. Cahit ARF’ın bu çalışması 1949 ‘da Proceedings of London Matematical Society dergisinde yayınlanmıştır.

Cahit ARF’ın 1940’lı yıllarda yaptığı bu çalışmaların günümüzde hala kullanılıyor olması, onun kalıcılığını ispatlamıştır.

Cahit ARF’ı ilk tanıyan bir kişi onun sadece matematiğe ilgi duyan bir insan olduğu izlenimini edinebilirdi. Cahit ARF için, matematik her şeyin üzerinde ve ötesindeydi. Ancak, onu TÜBİTAK’ın kurulmasında ve gelişmesinde gösterdiği çabayı ve özeni bilenler Cahit ARF’ın öyle içine kapanık, matematikle uğraşan, dış dünya ile ilgilenmeyen bir kişi olmadığını bilirler. Mühendisliğin günlük hayattan doğan problemlerine her zaman ilgi gösterirdi. Ama, bu probleme mutlaka matematiksel bir model bulmaya çalışırdı. Hele bir de pratikten gelen problemi matematik olarak çözüme kavuşursa pek keyiflenirdi. Mustafa İNAN’la böyle bir işbirliği yapmış ve İNAN’ın köprülerde gözlemleyip, araştırdığı bir sorunun matematiksel kesin çözümünü vermiştir. Bu çalışmaları Cahit ARF’a İnönü Ödülü’nü kazandırmıştır.

Üniversitede rektörlük, dekanlık gibi idari görevler almaktan kaçınmıştır. Araştırmacıların bu gibi görevlerden uzak durmaları gerektiği görüşündeydi. Ama uzun yıllar TÜBİTAK Bilim Kurulu Başkanlığı’nı da özveriyle yürütmüştür.

Ortadoğu Teknik Üniversitesi’nde bulunduğu yıllarda yeni ve farklı bir üniversite modelinin ve kültürünün ortaya çıkması için çaba göstermiştir. Akademik dünyanın yapay hiyerarşik ayrımlarıyla alay etmiştir. Genç öğretim üyeleri ve öğrencilerle çok güzel, yararlı ve keyifli diyalog içindeydi. Her zaman üniversite içi çekişmelerden ve politikadan özenle uzak durduğu halde, ODTÜ sistemi tehlikeye düştüğünde duyarlı ve sorumlu bir bilim adamı olarak kendini bir mücadelenin içine atmaktan çekinmemiştir. Bu onurlu mücadele de bile matematiğin aksiyomatik yaklaşımını kimseye farkettirmeden kullanmıştır.

Cahit ARF 1948’de İnönü Ödülü, 1974’de TÜBİTAK Bilim Ödülü, 1980’de İTÜ ve KATÜ Onur Doktorası, 1981’de de ODTÜ Onur Doktorası’nı aldı. Genç yaşta Mainz Akademisi Muhabir Üyeliğine seçildi ve Türkiye Bilimler Akademisi Onur Üyesi oldu.

Cahit ARF matematikte kalıcı izler bırakarak 26 Aralık 1997 ‘de aramızdan ayrılmıştır. Türkiye’de ve dünyada her zaman hatırlanacaktır.
Rapor Et
Eski 14 Ocak 2009, 20:15

Cebiri kim bulmuştur?

#7 (link)
hiloo
Ziyaretçi
hiloo - avatarı
cebiri kim buldu lütfen cevap bekliom
Rapor Et
Eski 14 Ocak 2009, 20:21

Cebir nedir? Tarihçesi nasıldır?

#8 (link)
TEKSİLAHJ0RDAN
Ziyaretçi
TEKSİLAHJ0RDAN - avatarı
Cebir temellerini El Harezmi'den alır. Cebir adı Harezmi' nin "El’Kitab’ül-Muhtasar fi Hısab’il - Cebri ve’l-Mukabele” adlı eserinden gelmektedir. Bu eser aynı zamanda doğu ve batının ilk müstakil cebir kitabı olma özelliğini taşımaktadır. El Harezmi'den bu yana cebir çok değişmiştir.

2. RİVAYET İSE:

Batılıların El Gabra(Algebra=cebir) dediği Cebir ilminin kurucusu kesin olarak bilinemekle birlikte Arap Matematikçi El Cabir Bin Hayyam'dır.
"El Cabir baştan sona kadar cebir ilmini kurdu.
1, 2 ve 3. dereceden denklemlerin çözümlerini gösterdi. Karekök ve küpkök almayı gösterdi." Kaynak:www.esam.gov.tr
Harezmi de cebirin kurucularındandır ama cebirin isim babası El Cabir'dir! İngilizce'deki Algebra kelimesi de bunu kanıtlamaktadır!
Son Düzenleyen TEKSİLAHJ0RDAN; 14 Ocak 2009 @ 20:22. Sebep: Mesajlar Otomatik Olarak Birleştirildi
Rapor Et
Eski 14 Ocak 2009, 21:50

Cebir nedir? Tarihçesi nasıldır?

#9 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
Alıntı:
Keten Prenses adlı kullanıcıdan alıntı Mesajı Görüntüle

CEBİRİN TARİHİ -

BİZANS'TA CEBİR
Bazı kaynaklar, Bizans'ta ileri bir matematiğin varlığı hakkında geniş bilgi verirler. Ortalama 1000
yıllık hayatı olan Bizans'in, matematik tarihinde, Eski Yunan matematiğini, ilerletip geliştirmesi bakımından, pek parlak bir duruma sahip değildi. Bu devir matematikçileri olarak belirtilen ve aynı zamanda Nikomedya (İzmit) rahibi olan Masimus Planudes (İzmit 1260 - İstanbul 1310), Dio-fantos' un birinci ve ikinci kitaplarına dair sadece tefsir yazabilmiştir. M. Planudes'in en çok bah-sedilen eseri, 1300 yılında yazdığı Hint Hesabı'dır. Planudes; bu eserinde, karekök alma kuralı-nı, Diafantos'un eserini esas almak suretiyle Hint metodunu tatbik etmişti.
14. yüzyılın ikinci yarısından itibaren, 15. yüzyılın ilk yarısına kadar (İstanbul'un fethi yıllarına ka-dar), Bizans matematiğinde bilim tarihinde isim bırakmış matematikçilere rastlanılmaz. Bu tarih-lerde, siyasal olaylar yüzünden, bilim ihmal edilmiştir. Bu tarihlerin ilginç bir olayı, İstanbul'da giz-li kalmış özel kişisel kitaplıkların dışında, elyazması ne kadar eser varsa İtalya'ya götürülmüştür. İstanbul'da el yazmalarına ait hiç bir eser bırakmamışlardır. Givanni Aurispa'nin (1369-1460) Bi-zans'tan Venedik'e 238 el yazması eser götürdüğü tarihi bir olay olarak bilinmektedir.
Bizans matematiğinin durumunu, ayrıntılarıyla incelemiş olan Hamit Dilgan Matematik Tarih ve Tekamülüne Bir Bakış adlı eserinde şöyle yazar : "Bizans'ta tam anlamıyla büyük matematikçi yetişmemiştir. Bir çoğunun eserleri (birkaçı müstesna) mütevazi ve basittir, Hatta bazılarının eser-lerindeki problemlerin, yazarları tarafından anlaşılamadığı seziliyor... Bütün bu hususlar, Eski
Yunan dehasının gerilemiş ve tükenmiş olduğuna canlı birer örnek teşkil eder. Şu kadar var ki,
Bizans matematiği, aynı devrelerdeki Roma matematiğinden çok daha ileri bir durumda olmakla beraber, Doğu İslam Dünyası Matematiğine nazaran çok geri kalmıştı.''
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker


CEBİRİN AVRUPA'DA GÖRÜLMESİ
Matematik tarihi eserleri; yazılan ilk cebir kitabının Harezmi'nin el-Kitabü'l Muhtasar fi Hesabi'l Cebri ve'l Mukabele adlı eseri olduğunu belirtir. Batılı yazarların da belirttikleri gibi, İspanya yo-luyla Avrupa'ya giren ilk cebir kitabı, Harezmi'nin adını belirttiğimiz eseridir. Bu eserde görülen çözüm yolları, İtalyan matematikçi, Leonardo Pisano (1170 - 1250) tarafından yazılmış Liner Aba-cı (Hesap Metodu) adlı kitap ile 1202 yılında İtalya'ya girmiştir. Bu eser, Batılı matematikçilerden; Passioli, Tartiaglie ve Cardon'un çalışmalarına temel eser olmuştur.Öyle ki, bu matematikçilerin eserleri incelendiğinde, Harezmi'ye ait izlerin varlığını görmek müm-kündür. Harezmi'nin eseri ile yukarıda adlarını belirttiğimiz matematikçilerin eserlerini ayrıntılarıy-la incelemiş olan Hamid Dilgan bu konu ile ilgili olarak aynen şunları söyler: "Batılı yazarlar ce-biri, Cebri ve'l Mukabel adlı eserin Latince tercümesinden öğrenmişlerdir." Adnan Adıvar ise bir makalesinde şunları yazar: "G.Libri tarafından, 1915 yılında New - York'ta yapılan tercümenin es-ki Latince nüshanın üzerinde İspanya'da bulunan Sagovia şehrinin adı 1145 yılında yazılı oldu-ğunu belirterek bu tarihe, aynı zamanda Avrupa'da Cebirin Doğuş Tarihi olarak bakmak müm-kündür."
Harezmi'nin bu eseri, temel eser kabul edilerek bu konuda, Avrupa'da cebirle ilgili yeni eserler yazılmış ve Harezmi adı ile eserinin adı kısa sürede yayılmaya başlamıştır.
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker



ESKİ HİNT DÜNYASI'NDA CEBİR
İçinde bulunduğumuz yüzyılın araştırmaları; Eski Hint Dünyası'nda özellikle 6. , 7. , 9. ve 12. yüz-yıllarda, matematikle ilgili olarak, çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışma-ların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen, Hint matematik-çileri, bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan: Brahmagupta, Aryabatha, Mahavra ve Bhaskara adlarını belirtebili-riz. Kaynaklar; Brahmagupta'nın Kutakhadyaka adlı eserinde de, münferit cebir konularının görül-düğünü, ancak bunların düzenli ve ayrıntılı olarak, cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir. Buraya kadar; adlarını belirttiğimiz; Diofantos'un "Aritmetika" ve Brahmagupta'nın Kutakhadyaka adlı iki eserde, ikinci derece denklemlerin çizim yoluyla (geo-metrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli ol-duğunda kaynaklar hemfikirlerdir.
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker
ESKİ MISIRLILAR'DA CEBİR
İnceleyebildiğiniz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, oldukça ilkel cebirin varlığı görülmektedir. Bu konuda aha hesabı adı verilen bir hesaplama türüne rastlanılmaktadır. Bu hesaplama türü hakkında, Aydın Sayılı Mısırlılar'da ve Mezopotamyalılar'-da Matematik, Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;
Aha kelimesi, grup ya da miktar anlamına gelmektedir. Böyle adlandırma, bir metot görüşü olarak yapılmış olmakla beraber, aha hesaplarında, "Yanlış ve Deneme yoluyla Yoklayarak çözüm" metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle, bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair, açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz'a atfen altı örnek belirtmektedir. Bunlar :
x/y = 4/3 ; xy = 12

xy = 40 ; x = (5/2)y

xy = 40 ; x/y = (1/3) + (1/15) = 2/5

10xy = 120 ; y = (3/4)x

x2 + y2 = 100 ; y = (3/4)x

a2 + b2 = 400 ; a = 2x ; b = (3/2)x
Hemen belirtmek gerekir ki; bu örnekler, Mısırlıların aha hesabında yaptıklarının, bugünkü ceb-rik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.
Yukarıdaki altı tip örnekte görülebileceği gibi, problemler hep özel durumları temsil ediyor. An-cak, Aydın Sayılı adı geçen eserinde, bu konuda : "Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin aha hesaplarıyla ilgili papi-rüslerde, herhangi bir metot söz konusu edilmemesine rağmen, bunlarda özel bir metoda uyul-duğu gayet sarih bir şekilde görülmektedir ... Problemlerin pedagojik amaçlarla bu şekilde ter-tiplenmiş oldukları söylenebilir."
Kaynak: Fen Bilimleri Tarihi - Lütfi Göker



ESKİ YUNAN'DA CEBİR
Çoğu kaynaklarda; cebir denildiğinde, Eski Roma çağı Yunan matematikçisi Diofantos'un (225-400) adından bahsedilir. Diofantos'un Aritmetika adlı bir eseri mevcut olup, bu eserde sistematik olmamak üzere, münferit bazı cebir konuları ile birlikte, ikinci derece denklemlerin çözümü görül-mektedir. Ancak, Diofantos devri Yunan matematiği, bazı harf ve semboller ile ifade edilmekte olduğundan, Diofatos'un Jukarda adını belirttiğimiz eseri, Harezmi'deki cebir işaretleri ve sis-temlerinin oynadığı rolden mahrum olması bakımından gerçek anlamda düzenli ve disiplinli bir cebir kitabı olmaktan uzaktır. Kaldı ki; Harezmi'nin Cebri ve'l Mukabele adlı eserinde görülen çö-züm yolları, tamamen geometrik düşüncelerle temellendirilmiş olup, bu tür sistematik çözümü de, cebire ilk ithal edenin, Harezmi olduğu son yüzyıl içinde yapılan araştırmalarla ortaya konulmuş-tur.
Diofantos'ta görülen ikinci derece denklemlerin çözüm metotları, Mezopotamyalılar'ınkine ben-zemektedir. Aydın Sayılı adı geçen eserinde : "Mezopotamyalılarda görülen denklem çözme geleneklerinin, Diofantos'ta devam ettiği görülmektedir. Demek ki Diofantos'taki şekliyle Yunan cebri Mezopotamya cebirirıin hemen hemen, doğrudan doğruya bir devamını, Abdülhamit İbn-i vasi Türk (? - 847) ile Harezmi cebri ise tadil edilmiş bir şekildeki devamını teşkil etmektedir."
Gene adı geçen eserde: Öklid'in Elementler adlı kitabında görülen:
(a+b)2 + (a-b)2 = 2 (a2+b2) veya
2(a2+b2) - (a+b)2 = (a-b)2
şeklindeki özdeşliğin, cebirsel ifadelerin basitleştirilmesi ve çözümlerin kolay tiplere irca edil-mesi için, Mezopotamya matematikçileri tarafından kullanılmış olduğu belirtilir.
MEZOPOTAMYALILAR'DA CEBİR
Eski Mısır (M.Ö. XVIII y.y.) devrine ait papirüslerde, cebir işlemleri gibi yorumlanması mümkün bazı problemlere rastlanmıştır. Fakat Babil matematiği M.Ö. 3000'e kadar çıktığından, bu konu-daki Mısır bilgisine, Babil bilimiyle temas neticesinde varılmış olduğu kabul edilmektedir. Bu-nunla beraber, Babil cebirinin, ne sembolik isaretler yönünden, ne de özellikle negatifsayılar kavramı itibariyle müstakil bir bilim dalı olarak kurulmuş bulunduğunu söylemek mümkün değil-dir. Bu sonuca çok sonraları varılmıştır. M.S. V. - VI. yüzyıllarda, Hind'de, sıfır kavramıyla birlikte, ilk merhale aşılarak, VIII. yüzyıl ortalarından itibaren, İslam bilginleri tarafından yüksek bir merte-beye çıkarılmıştır. Özellikle"El - Cebr v'el Mukabele" adı altında ilk cebir kitabının bir müslüman Türk bilgini olan El - Harezmi'ye ait bulunduğunu söyleyebiliriz. Fakat cebirin, daha M.Ö. 3000'-lerden itibaren, Mezopotamya'da var olmuş ve hayli gelişmil bulunduğu bugün kabul edilmek-tedir.

Bugün bir veya çok bilinmeyenli cebir denklemleriyle çözdüğümüz türden birçok problemlere Babil tabletlerinde rastlanmıştır. Mesela: Bu tablette, bir dikdörtgenin eniyle boyunu veren sayı-lar birbiriyle çarpılır ve bu sayılar arasındaki fark, bu çarpıma eklenirse 153 elde ediliyor. Aynı sayılar birbirine eklenirse 27 çıkıyor. Bu şeklin eni, boyu ve yüzölçümü nedir sorusu soruluyor ve cevap olarak: 20, 7 ve 140 değerleri veriliyor.
Kaynak: Bilimler Tarihi - Celal Saraç
TÜRK - İSLAM DÜNYASI'NDA CEBİR
Objektif olarak hazırlanmış, matematik tarihi eserleri incelendiğinde, açık olarak şu hüküm görü-lür; Matematiğin geniş bir dalı olan cebire ait temel bilgilerin büyük bir çoğunluğu, 8. ile 16. yüzyıl Türk - İslam Dünyası alimleri tarafından ilk olarak ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir.

İslamiyetin Başlangıç Yılları
İslamiyetin başlangıç yıllarında; dini günlerin tespiti, namaz vakitlerinin belirlenmesi, takvim hazır-lanması gibi dini problemlerle uğraşılmış olunduğu muhakkak ise de, o devir İslam matematikçi-lerinin, arazi ölçüleri, veraset hesapları, yükseklik tayini ve günlük yaşantı için gerekli pratik ölç-me ve hesaplamalar hakkında bazı çalışmaların varlığı söz konusu olabilir. Hamid Dilgan; Bü-yük Matematikçi Ömer Hayyam adlı eserinde bu konuda şunları yazar : "İslam matematiği, an-cak hicretin ikinci yüzyıl ortalarında Bağdat'ta doğmuştur." Ancak bu tarihten itibaren, Bağdat'ta kurulan ve bugünkü Üniversitelere benzer kurum olan Dar-ül Hikme'de başta matematik olmak üzere, öteki bilimler hızla gelişmeye başlamıştır.
Gıyasüddin Cemşid ve Cebir
Gıyasuddin Cemşid, aritmetikle ilgili ilmi çalışmalarının yanında, cebirde yüksek dereceden nü-merik denklemlerin yaklaşık çözümlerine, kendi görüşü olarak ortaya koyduğu orjinal çözüm yolları ile, etkinliğini zamanımıza kadar sürdürmüştür. Bu konuda; özellikle; ax3 + x3 = bx tipindeki üçüncü derece denklemlerin çözümünde, zamanı için yeni olan çözüm yolları ortaya koymuştur.
Alıntı:
Keten Prenses adlı kullanıcıdan alıntı Mesajı Görüntüle

cebir tarihi



Eski Mısırlılar'da Cebirİnceleyebildiğiniz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, oldukça ilkel cebirin varlığı görülmektedir. Bu konuda a h a h e s a b ı adı verilen bir hesaplama türüne raslanlmaktadır. Bu hesaplama türü hakkında, Aydın Sayılı Mısırlılarda ve Mezopotamyalılarda Matematik, Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;
A h a kelimesi, grup ya da miktar anlamına gelmektedir. Böyle adlandırma, bir metot görüşü olarak yapılmış olmakla beraber, a h a hesaplarında, "Yanlış ve Deneme yoluyla Yoklayarak çözüm" metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle, bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair, açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz'a atfen altı örnek belirtmektedir. Bunlar :

1) x/y = 4/3 ; xy = 12

2) xy = 40 ; x = (5/2)y

3) xy = 40 ; x/y = (1/3) + (1/15) = 2/5

4) 10xy = 120 ; y = (3/4)x

5) x2 + y2 = 100 ; y = (3/4)x

6) a2 + b2 = 400 ; a = 2x ; b = (3/2)x

Hemen belirtmek gerekir ki; bu örnekler, Mısırlıların a h a hesabında yaptıklarının, bugünkü cebrik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.
Yukarıdaki altı tip örnekte görülebileceği gibi, problemler hep özel durumları temsil ediyor. Ancak, Aydın Sayılı adı geçen eserinde, bu konuda : "Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin a h a hesaplarıyla ilgili papirüslerde, herhangi bir metot söz konusu edilmemesine rağmen, bunlarda özel bir metoda uyulduğu gayet sarih bir şekilde görülmektedir ... Problemlerin pedagojik amaçlarla bu şekilde tertiplenmiş oldukları söylenebilir."

Mezopotamyalılar'da Cebir Mezopotamya Matematiğinin gelişmiş bir durumda olan dalı da cebirdir. Kaynaklar; "Mezopotamya Matematiğinde" gelişmiş bir cebir bilgisinin var olduğunu belirtmekte, bunun sonucu olarak da, bugünkü cebirin kurucuları olarak Mezopotamyalıları göstermektedir.
Mezopotamya cebirinin gelişim tarihini üç safhaya ayırabiliriz. Bunlar :
a) Retorik Safha :
Bu safhada; bütün ayrıntılar normal cümleler halinde sözlü olarak belirtilmekte,
b) Kısaltma Safhası :
Bu safhada, yer yer kısaltmalar, klişe ifadeler ve semboller kullanılmakla beraber, yine sözlü ifadeler az çok hakim durumda kalmakta.
c) Sembolik Safha :
Bu safhada; a, b, x, y2, (=), ve (+) gibi sembol ve işaretler kullanarak, her şey sembolik denklemler ve münasebetler vasıtasıyla ifade edilmektedir.
Aydın Sayılı adı geçen eserinde "Mezopotamya Cebri" nin retorik safhada olduğunu belirtmekte ve şu bilgileri vermektedir.
" Mezopotamya cebir problemlerini ve çözümlerini ihtiva eden tabletlerde genellikle özel problemlerle ve bunların çözüm yolları ve çözüm sonuçları ile karşılaşıyoruz. Birinci derece denklemlerin çözümü Mezopotamyalılar için oldukça basit bir meseleydi. İkinci derece denklemleri ayrıntılı bir şekilde inceledikleri ve bu denklemlerin çözümlerinde büyük yetenek gösterdikleri görülmektedir. Metinlerde, bazen üçüncü derece denklemleriyle de karşılaşılıyor. Üçüncü derece denklemlerin bazı basit tiplerini çözümleyebiliyorlardı. Bu çözümlerde bir takım özel cetvellerden yararlanmış oldukları anlaşıldığı gibi, bazı örneklerin çözümünde tesadüfün de rolü olmuş olabilir. Ayrıca yoklama ve deneme suretiyle sonucun elde edilmesinden yararlanmış olabilirler. Genellikle, ikinciden daha yüksek dereceden denklemlerin ikinci dereceye indirgenmesi mümkün olanlarını çözümleyebiliyorlardı. Bu gibi çözümlerde derecenin indirilmesi için yardımcı bilinmeyenlerin kullanılması metodundan geniş ölçüde faydalanıyorlardı."

Eski Yunan'da Cebir Çoğu kaynaklarda; cebir denildiğinde, Eski Roma çağı Yunan matematikçisi Diofantos'un (225-400) adından bahsedilir. Diofantos'un Aritmetika adlı bir eseri mevcut olup, bu eserde sistematik olmamak üzere, münferit bazı cebir konuları ile birlikte, ikinci derece denklemlerin çözümü görülmektedir. Ancak, Diofantos devri Yunan matematiği, bazı harf ve semboller ile ifade edilmekte olduğundan, Diofatos'un Jukarda adını belirttiğimiz eseri, Harezmi'deki cebir işaretleri ve sistemlerinin oynadığı rolden mahrum olması bakımından gerçek anlamda düzenli ve disiplinli bir cebir kitabı olmaktan uzaktır. Kaldı ki; Harezmi'nin Cebri ve'l Mukabele adlı eserinde görülen çözüm yolları, tamamen geometrik düşüncelerle temellendirilmiş olup, bu tür sistematik çözümü de, cebire ilk ithal edenin, Harezmi olduğu son yüzyıl içinde yapılan araştırmalarla ortaya konulmuştur.
Diofantos'ta görülen ikinci derece denklemlerin çözüm metotları, Mezopotamyalılarınkine benzemektedir. Aydın Sayılı adı geçen eserinde : "Mezopotamyalılarda görülen denklem çözme geleneklerinin, Diofantos'ta devam ettiği görülmektedir. Demek ki Diofantos'taki şekliyle Yunan cebri Mezopotamya cebirirıin hemen hemen, doğrudan doğruya bir devamını, Abdülhamit ibn-i vasi Türk (? - 847) ile Harezmi cebri ise tadil edilmiş bir şekildeki devamını teşkil etmektedir." Gene adı geçen eserde: Öklid'in Elementler adlı kitabında görülen:
(a+b)2 + (a-b)2 = 2 (a2+b2) veya
2(a2+b2) - (a+b)2 = (a-b)2 şeklindeki özdeşliğin, cebirsel ifadelerin basitleştirilmesi ve çözümlerin kolay tiplere irca edilmesi için, Mezopotamya matematikçileri tarafından kullanılmış olduğu belirtilir.

Eski Hint Dünyası'nda Cebir İçinde bulunduğumuz yüzyılın araştırmaları; Eski Hint Dünyasında, özellikle 6., 7., 9. ve 12. yüzyıllarda, matematikle ilgili olarak, çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışmaların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen, Hint matematikçileri, bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan : Brahmagupta (598-660), Aryabatha (6. yüzyıl), Mahavra (9. yüzyıl) ve Bhaskara'nın (1114-1158) adlarını belirtebiliriz.
Kaynaklar; Brahmagupta'nın Kutakhadyaka adlı eserinde de, münferit cebir konularının görüldüğünü, ancak bunların düzenli ve ayrıntılı olarak, cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir.
Buraya kadar; adlarını belirttiğimiz, Diofantos'un Aritmetika ve Brahmagupta'nın Kutakhadyaka adlı iki eserde, ikinci derece denklemlerin çizim yoluyla (geometrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli olduğunda kaynaklar hemfikirdirler.

Bizans'ta Cebir Bazı kaynaklar, Bizans'ta ileri bir matematiğin varlığı hakkında geniş bilgi verirler. Ortalama 1000 yıllık hayatı olan Bizans'ın, matematik tarihinde, Eski Yunan matematiğini, ilerletip geliştirmesi bakımından, pek parlak bir duruma sahip değildi. Bu devir matematikçileri olarak belirtilen ve aynı zamanda Nikomedya (İzmit) rahibi olan Masimus Planudes (İzmit 1260 -İstanbul 1310), Diofantos'un birinci ve ikinci kitaplarına dair sadece tefsir yazabilmiştir. M. Planudes'in en çok bahsedilen eseri, 1300 yılında yazdığı Hint Hesabı'dır. Planudes; bu eserinde, karekök alma kuralını, Diofantos'un eserini esas almak suretiyle Hint metodunu tatbik etmişti.
14. yüzyılın ikinci yarısından itibaren, 15. yüzyılın ilk yansına kadar (İstanbul'un fethi yıllarına kadar), Bizans matematiğinde bilim tarihinde isim bırakmış matematikçilere rastlanılmaz. Bu tarihlerde, siyasal olaylar yüzünden, bilim ihmal edilmiştir. Bu tarihlerin ilginç bir olayı, İstanbul'da gizli kalmış özel kişisel kitaplıkların dışında, elyazması (manüskrit) ne kadar eser varsa İtalya'ya götürülmüştür. İstanbul'da elyazmalarına ait hiç bir eser bırakmamışlardır. Givanni Aurispa'nın (1369-1460) Bizans'tan Venedik'e 238 elyazması eser götürdüğü tarihi bir olay olarak bilinmektedir.
Bizans matematiğinin durumunu, ayrıntılarıyla incelemiş olan Hamit Dilgan Matematik Tarih ve Tekamülüne Bir Bakış adlı eserinde şöyle yazar : "Bizans'ta tam anlamıyla büyük matematikçi yetişmemiştir. Birçoğunun eserleri (birkaçı müstesna) mütevazı ve basittir, Hatta bazılarının eserlerindeki problemlerin, yazarları tarafından anlaşılamadığı seziliyor... Bütün bu hususlar, Eski Yunan dehasının gerilemiş ve tükenmiş olduğuna canlı birer örnek teşkil eder. Şu kadar var ki, Bizans matematiği, aynı devrelerdeki Roma matematiğinden çok daha ileri bir durumda olmakla beraber, Doğu İslam Dünyası Matematiğine nazaran çok geri kalmıştı.''
..
Rapor Et
Eski 17 Mart 2009, 19:19

Cebirin tarihçesi hakkında bilgi verebilir misiniz?

#10 (link)
ömer USLU
Ziyaretçi
ömer USLU - avatarı
Cebirin tarihçesi hakkında bilgi verebilir misiniz?
Son Düzenleyen fadedliver; 17 Mart 2009 @ 20:12.
Rapor Et
Cevap Yaz Yeni Konu Aç
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.534 saniyede (90.60% PHP - 9.40% MySQL) 17 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +3 - Saat: 17:43
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi