Cevap Yaz Önceki Konu Sonraki Konu

Leonardo Fibonacci kimdir, hayatı ve çalışmaları hakkında bilgi verir misiniz?

Gösterim: 33538 | Cevap: 9
  • fibonacci kimdir
  • leonardo fibonacci hayati
  • leonardo fibonacci kimdir
4
  • 1 Gönderen Blue Blood
  • 1 Gönderen Misafir
  • 1 Gönderen Misafir
  • 1 Gönderen Misafir
Ziyaretçi
Cevaplanmış   |    4 Aralık 2008 15:13   |   Mesaj #1   |   
Avatarı yok
Ziyaretçi
LEONARDO FİBANOCCİ NİN BULUŞLARI HAKKINDA BİLGİ
En iyi cevap Misafir tarafından gönderildi

abimm saolun veriyasunuz bu bilgileride çok kısa oluo hacalar not kırıyo :) biraz daha uzun bişeler bulur sanız seviniri(z)m

Blue Blood
4 Aralık 2008 15:23   |   Mesaj #2   |   
Avatarı yok
Ziyaretçi
Leonardo Fibonacci, (Pisalı Leonardo, Leonardo Pisano d. 1170, ö. 1250), yaygın olarak ismiyle Fibonacci diye anılan, orta çağın en yetenekli matematikçisi olarak kabul edilen İtalyan matematikçi.[1]
Fibonacci modern çağda en fazla Hint-Arap Sayılarını Avrupa'ya getirmesiyle ve 13. yüzyıl başlarında yayınlanan Liber Abaci isimli hesaplama yöntemleri kitabıyla tanınır. Liber Abaci'de bir örnek olarak yer alan modern sayılarla hesaplanmış kendi adıyla anılan sayı dizisi Fibonacci Dizisi olarak anılmaktadır.[2][3] Sadece Fibonacci dizisi ve özellikleri ile ilgili kitaplar hatta haftalık düzenli yayınlanan matematik dergileri bile bulunmaktadır.

Konu başlıkları

[gizle]

* 1 Biyografisi
* 2 Liber Abaci
* 3 Fibonacci dizisi
* 4 Altın oran
* 5 Güncel olaylarda izleri
* 6 Kaynaklar


Biyografisi [değiştir]


Fibonacci dizisi [değiştir]

Ana madde: Fibonacci dizisi

Daha önce 6. yüzyılda Hintli matematikçiler tarafından bulunmuş olan bu sayı dizisi Liber Abaci kitabında tavşanların üremesiyle ilgili problemin hesaplanması sonucu Fibonacci tarafından 1202 yılında ortaya konmuştu. Dizinin ilk sayı değeri 0, ikincisi 1 ve her ardışık elemanı da önceki iki elemanın sayı değerinin toplamı alınarak bulunur ve bu halde 0, 1, 1(1+0), 2(1+1), 3(2+1), 5(3+2), 8(5+3), 13(8+5),... şeklinde artar.


Altın oran

Bu dizinin ileri elemanlarında, bir sonraki elemanın bir öncekine oranı altın oran adı verilen ve yaklaşık 1.618 (1:0.618) değerine eşit bir sayıyı verir.
Altın oran matematikte genellikle harfi ile gösterilir.
Tabiattaki canlılarda uzuvların oranı altın oran adı verilen 1.618... sayısına uygunluk gösterir. Antik mimari eserler ve bazı modern mimari eserler bu orana uygun tasarlanırlar. Altın orana uygun ölçülerdeki nesnelerin ve canlıların daha estetik olduğu ve güzel göründüğü savunulur

Ayçiçeği'nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru taneler sayıldığında çıkan sayılar Fibonacci Dizisinin ardışık terimleridir. Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir Fibonacci Dizisi mevcuttur. Fibonacci dizisinde ardışık el birönceki elamının oranı deki ardışık terimlerin farkıyla oluşan dizi de Fibonacci dizisidir. Ömer Hayyam üçgenindeki tüm katsayılar veya terimler yazılıp çapraz toplamları alındığında Fibonacci Dizisi ortaya çıkar. Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu taneler soldan sağa ve sağdan sola sayıldığında çıkan sayılar, Fibonacci Dizisi'nin ardışık terimleridir.Bitkilerin yapraklarının dizilişinde bir Fibonacci Dizisi söz konusudur; yani yaprakların diziliminde bu dizi mevcuttur. Mimar Sinan'ın da birçok eserinde Fibonacci dizisi görülmektedir. Mesela Süleymaniye
ve Selimiye Camileri'nin minarelerinde bu dizi mevcuttur.
sweet girl bu mesajı beğendi.
Misafir
12 Ocak 2010 17:47   |   Mesaj #3   |   
Avatarı yok
Ziyaretçi
abimm saolun veriyasunuz bu bilgileride çok kısa oluo hacalar not kırıyo biraz daha uzun bişeler bulur sanız seviniri(z)m
sweet girl bu mesajı beğendi.
Misafir
28 Şubat 2010 15:45   |   Mesaj #4   |   
Avatarı yok
Ziyaretçi
leronardo hayatı
sweet girl bu mesajı beğendi.
Misafir
24 Kasım 2010 02:51   |   Mesaj #5   |   
Avatarı yok
Ziyaretçi
bu adamhata olman yapmak lazın hayatını en onemli buluşunu yaptıklarını bulun yaf ben bulamadım girmeımdigim yerr kalmadı bulamazsak simidi yerim o ı yanı 1
sweet girl bu mesajı beğendi.
sweet girl
7 Nisan 2011 21:07   |   Mesaj #6   |   
Avatarı yok
Ziyaretçi
FİBONACCİ KİMDİR?
Orta çağın en büyük matematikçilerinden biri olarak kabul edilen Fibonacci İtalya'nın ünlü Pisa şehrinde doğmuştur. Çocukluğu babasının çalıştığı Cezayir'de geçmiştir. İlk matematik eğitimini Müslüman bilim adamlarından almış ve İslam aleminin kitaplarını incelemiş ve çalışmıştır. Avrupa'da Roma rakamları kullanılırken ve sıfır kavramı ortaalrda yokken Leonarda Arap rakamlarını ve sıfırı öğrenmiştir.

1201 yılında "Liber Abacci" (cebir kitabı manasına gelir) adında bir matematik kitabı yazmıştır. Bu kitapla Avrupa'ya Arap rakamlarını ve bugün kullandığımız sayı sistemini tanıtmıştır. Bu kitapta, ilkokulda öğrendiğimiz temel matematik ( toplama, çarpma, çıkartma ve bölme ) kurallarını bir çok örnek vererek anlatmıştır.


19 Temmuz 2012 20:42   |   Mesaj #7   |   
byz_qny - avatarı
VIP »ѕüĸûт-υ нάуάl«
Msxlabs MK
489
965 mesaj
Kayıt Tarihi:Üyelik: 06-12-2011
Leonardo Fibonacci




Fibonacci Adı orta çağın en büyük matematikçileri arasında geçen Fibonacci’nin hayatı ile ilgili pek fazla bilgi bulunmamaktadır. İtalya’nın Pisa şehrinde 1170’li yıllarda doğduğu sanılmakta, babasının işi nedeniyle Kuzey Afrika’ya ve Cezayir’e gitttiği ve burada Arap hocalardan matematik dersleri aldığı bilinmektedir. Hint-Arap sayılarını (1, 2, 3…) öğrenerek, bunları Avrupa’ya tanıtmıştır. Bu bakımdan Fibonacci, matematiği Araplardan alıp Avrupa’ya tanıtan kişi olarak anılır.
“Fibonacci sayıları” ve özellikle “Altın Oran”, matematikçilerin oldukça ilgisini çekmiş ve birçok araştırmaya konu olmuş bulgulardır. Bunun sebepleri; Fibonacci dizisindeki sayıların oranı olan 0,61803… sayısının -ki buna “Altın Oran” denilmektedir- tarihte oyun kartlarından piramitlerin yapımına kadar birçok alanda kullanılmış olması, sayı teorilerinde ortaya çıkması ve doğada birçok varlıkta gözlemlenmesidir.

İlk olarak 1202’de yazdığı Liber Abaci “The Book of Calculation” kitabının yeni versiyonunu 1228’de tamamlayan Fibonacci’nin, Practica Geometria “The Practice of Geometry” (1220) , Flos “The flower” (1225) ve Liber Quadratorum “The Book of Square Numbers” (1225) kitapları ise matematik alanında ele almış olduğu diğer eserlerdir. Bu kitapların içinde en ünlü olanı, Fibonacci sayılarıyla Altın Oran’ın anlatıldığı “Liber Abaci”dir. Kitapta karşılaşılan bir problemin çözümünde Fibonacci dizisi anlatılmaktadır.
Bu problem aşağıdaki gibidir:


Tavşan Problemi

Dört yanı duvarlarla çevrili bir yere bir çift tavşan konmuştur. Her çift tavşanın bir ay içinde yeni bir çift tavşan yavruladığı, her yeni çiftin de erginleşmesi için bir ay gerektiği ve tavşanların ölmediği varsayılırsa, 100 ay sonunda dört duvarın arasında kaç çift tavşan olur?” Bu şekilde düşünüldüğü takdirde tavşan çiftleri aylara göre şu sıralamayı ortaya koymaktadır: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,… Görüldüğü gibi ilk iki sayı hariç, her sayı kendisinden önce gelen iki sayının toplamına eşittir. Bu sayıların arasındaki oran ise bize altın oranı vermektedir.


Fibonacci Dizisinin Görüldüğü ve Kullanıldığı Yerler

1) Ayçiçeği: Ayçiçeği’nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru taneler sayıldığında çıkan sayılar Fibonacci Dizisinin ardışık terimleridir.
2) Papatya Çiçeği: Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir Fibonacci Dizisi mevcuttur.
3) Fibonacci Dizisinin Fark Dizisi: Fibonacci Dizisindeki ardışık terimlerin farkıyla oluşan dizi de Fibonacci Dizisidir.
4) Ömer Hayyam veya Pascal veya Binom Üçgeni: Ömer Hayyam üçgenindeki tüm katsayılar veya terimler yazılıp çapraz toplamları alındığında Fibonacci Dizisi ortaya çıkar.
5) Tavşan: Zaten sorumuz tavşanla alakalı…
6) Çam Kozalağı: Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu taneler soldan sağa ve sağdan sola sayıldığında çıkan sayılar, Fibonacci Dizisi’nin ardışık terimleridir.
7) Tütün Bitkisi: Tütün Bitkisinin yapraklarının dizilişinde bir Fibonacci Dizisi söz konusudur; yani yaprakların diziliminde bu dizi mevcuttur. Bundan dolayı tütün bitkisi Güneş’ten en iyi şekilde güneş ışığı ve havadan en iyi şekilde Karbondioksit alarak Fotosentez’i mükemmel bir şekilde gerçekleştirir.
8 ) Eğrelti Otu: Tütün Bitkisindeki aynı özellik Eğrelti Otu’nda da vardır.
9) MİMAR SİNAN: Mimar Sinan’ın da bir çok eserinde Fibonacci Dizisi görülmektedir. Mesela Süleymaniye ve Selimiye Camileri’nin minarelerinde bu dizi mevcuttur.
Misafir
15 Nisan 2013 19:22   |   Mesaj #8   |   
Avatarı yok
Ziyaretçi
Alıntı
Misafir adlı kullanıcıdan alıntı

abimm saolun veriyasunuz bu bilgileride çok kısa oluo hacalar not kırıyo biraz daha uzun bişeler bulur sanız seviniri(z)m


FİBONACCİ (Leonardo Fibonacci) KİMDİR?



Orta çağın en büyük matematikçilerinden biri olarak kabul edilen Fibonacci İtalya´nın ünlü Pisa şehrinde doğmuştur. Çocukluğu babasının çalıştığı Cezayir´de geçmiştir. İlk matematik eğitimini müslüman bilim adamlarından almış ve İslam aleminin kitaplarını incelemiş ve çalışmıştır. Avrupa´da Roma rakamları kullanılırken ve sıfır kavramı ortalarda yokken Leonarda Arap rakamlarını ve sıfırı öğrenmiştir.


1201 yılında "Liber Abacci" (cebir kitabı manasına gelir) adında bir matematik kitabı yazmıştır. Bu kitapla Avrupa´ya Arap rakamlarını ve bugün kullandığımız sayı sistemini tanıtmıştır. Bu kitapta, ilkokulda öğrendiğimiz temel matematik ( toplama, çarpma, çıkartma ve bölme ) kurallarını bir çok örnek vererek anlatmıştır.



FİBONACCİ DİZİSİ
Gelelim Fibonacci´nin ünlü sorusuna..

"Bir çift yavru tavşan( bir erkek ve bir dişi) var. Bir ay sonra bu yavrular erginleşiyor..

Erginleşen her çift tavşan bir ay sonra bir çift yavru doğuruyorlar. Her yavru tavşan bir ay sonra erginleşiyorlar. Hiç bir tavşanın ölmediğini ve her dişi tavşanın bir erkek bir dişi yavru doğurduğunu

varsayalım. Bir yıl sonra kaç tane tavşan olur?"

1. İlk ayın sonunda , sadece bir çift vardır.
2. ikinci ayın sonunda dişi bir çift yavru doğurur, ve elimizde 2 çift tavşan vardır.
3. Üçüncü ayın sonunda, ilk dişimiz bir çift yavru doğurur, 3 çift tavşanımız olur
4. Dördüncü ayın sonunda , ilk dişimiz yeni bir çift yavru daha doğurur, iki ay önce doğan dişi de bir çift yavru doğurur ve 5 çift tavşanımız vardır.

Bu şekilde devam ederek şu diziyi elde ederiz: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89,144 Dizideki sayılar Ocak (ilk yavru çiftinin olduğu ay) ile Aralık arasındaki ayların her birinde tavşan çiftlerinin sayısını vermektedir.

Peki, bu diziyi böylesine ilginç kılan nedir? Bunu üç ayrı nedene bağlayabiliriz.

1. İlk olarak dizinin küçük üyelerinin doğada, beklenmedik yerlerde karşımıza çıkmasıdır.; bitkiler, böcekler, çiçekler vb. şeylerle ilgili olarak..

2. İkinci neden, oranların limit değeri olan 0,618033989 sayısının çok önemli bir sayı olmasıdır. ALTIN ORAN diye adlandırılan bu sayı Leonardo Da Vinci'nin resimlerinden eski Yunan tapınaklarına kadar bir çok sanat eserinde ve doğada karşımıza çıkan bir sayıdır.

3. Üçüncüsü ise sayılar teorisinde beklenmedik biçimde farklı bir çok kullanımı olmasıdır.



FİBONACCİ SAYILARI VE BİTKİLER
Eğer bir bitkiyi dikkatle incelerseniz fark edersiniz ki, yapraklar ,hiç bir yaprak alttaki yaprağı kapmayacak şekilde dizilmiştir. Bu da demektir ki, her bir yaprak güneş ışığın eşit bir şekilde paylaşıyor ve yağmur damlaları bitkinin her bir yaprağına değebiliyor.


Bir bitkinin sapındaki yaprakların, bir ağacın dallarının üzerinde hemen her zaman Fibonacici sayıları bulursunuz. Eğer yapraklardan biri başlangıç noktası olarak alınırsa ve bundan başlayarak, aşağıya ya da yukarıya doğru, başlangıç noktasının tam üstünde veya altında bir yaprak buluncaya kadar yapraklar sayılırsa bulunan yaprak sayısı farklı bitkiler için değişik olacaktır ama her zaman bir Fibonacci sayısıdır.

Fibonacci sayılarıyla bitki aleminde karşılaşmanın en çarpıcı örneklerinden biri ayçiçeği tohumlarında mevcut, saat ibresinin hareket yönünde ve buna karşı yönde uzayan iki tür spirallerin sayısının ardışık iki Fibonacci sayısı olmasıdır. Orta büyüklükte ayçiçekleri için spirallerin sayısı 34´ karşılık 55 veya 55´e karşılık 89, daha büyükleri için 89´a karşılık 144, ve küçükler içinde 13´e karşılık 21 veya 21´e karşılık 34 olarak gözlenmiştir.

Buna benzer bir durum papatya çiçeklerinde 21´e karşılık 34, ananaslarda 8´e karşılık 13, çam kozalaklarında 5´e karşılık 8 veya 8´e karşılık 13 olarak gözlenmiştir.


Bitki aleminde yaprakların saplar üzerindeki dizilişi (phyllotaxy) ile Fibonacci sayıları arasındaki ilişkiye dair çok sayıda örnek vardır. Örneğin 2/5 kesri ile ifade edilen bir phyllotaxy, iki yaprağın sap boyunca aynı sıraya gelinceye kadar sap etrafında iki tur yaptığını ve sap boyunca 5 tane sıra oluşturduğunu anlatmaktadır. Sap boyunca belli bir yapraktan sonra 6. yaprak aynı sırada (hizada)
olup, ardışık iki yaprak sap etrafında 720/5=144 derecelik açı yapmaktadır. Bazı bitkiler için bu oranlar: Karaağaç, çim için 1/2, Kayın için 1/3, Meşe, elma, armut için 2/5, Kavak, muz için 3/8, Badem, pırasa için 5/13 olarak gözlenmiştir.



Fibonacci dizisine büyüyen bir bitkinin üzerinde oluşan koltuk ve sap sayısında da rastlanır.

Yukarıdaki şekilde olduğu gibi sağa doğru uzayan bir petek ve n numaralı gözeye ulaşmak isteyen ancak büyük numaralı gözeden küçük numaralı gözeye dönmeyen bir arı göz önüne alalım. Arı n numaralı gözeye ulaşmak için kaç farklı yol izleyebilir? n = 1, 2, ... için b(n), n numaralı gözeye ulaşmak için izlenebilecek yol sayısı olsun. b(1) = 1, b(2) = 2 olmak üzere arının n numaralı gözeye gelebilmesi için ya n-1 numaralı ya da n-2 numaralı gözeye gelmiş olması gerekir ki, buralara b(n-1) ve b(n-2) yoldan gelebileceğinden, b(n) = b(n-1) + b(n-2) indirgeme bağıntısı elde edilir ki buda Fibonacci dizisinin indirgeme bağıntısının kendisidir.

(b(n)) dizisinin elemanları, 1, 2, 3, 5, 8, 13, ... olmak üzere

bunlar bir eleman gecikmeli Fibonacci dizisinin elemanlarıdır.



Kaynak
MİSAFİR
29 Aralık 2013 18:34   |   Mesaj #9   |   
Avatarı yok
Ziyaretçi
fibonacci nin fraktal ve fraktal geometrisi hakkında yaptığı çalışmalar nelerdir ? LÜTFEN ÇOK ACİLL!
MİSAFİR
29 Aralık 2013 18:39   |   Mesaj #10   |   
Avatarı yok
Ziyaretçi
fibonacci nin fraktal ve fraktal geometrisi hakkında yaptığı çalışmalar nelerdir ?
Misafir
18 Mart 2015 20:23
Avatarı yok
Ziyaretçi
Bu mesaj ahmetseydi tarafından silindi.

Sebep: Toplu işlem yapıldı. Muhtelif nedenlerden dolayı mesajlar silindi.
 
 
Cevap Yaz
Hızlı Cevap
İsim:
Mesaj:
Önceki Konu Sonraki Konu

Leonardo Fibonacci kimdir, hayatı ve çalışmaları hakkında bilgi verir misiniz? Konusuna Benzer Konular

Cevap: 3
Son Mesaj: 3 Aralık 2014 20:21
Cevap: 10
Son Mesaj: 13 Nisan 2014 18:32
Cevap: 32
Son Mesaj: 10 Aralık 2013 17:02
Cevap: 6
Son Mesaj: 22 Ağustos 2013 11:05
Cevap: 3
Son Mesaj: 10 Aralık 2012 19:54
Sayfa 0.399 saniyede 12 sorgu ile oluşturuldu