Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Sohbet (Flash Chat) Forumda Ara

Arıcıların matematiği kullandığı yerler nereleridir?

Bu konu Soru-Cevap forumunda YEah_Slicht! tarafından 15 Aralık 2008 (23:15) tarihinde açılmıştır.FacebookFacebook'ta Paylaş
13813 kez görüntülenmiş, 8 cevap yazılmış ve son mesaj 5 Nisan 2011 (18:32) tarihinde gönderilmiştir.
  • 5 üzerinden 1.00  |  Oy Veren: 1      
Cevap Yaz Yeni Konu Aç
Bu konuyu arkadaşlarınızla paylaşın:    « Önceki Konu | Sonraki Konu »      Yazdırılabilir Sürümü GösterYazdırılabilir Sürümü Göster    AramaBu Konuda Ara  
Eski 15 Aralık 2008, 23:15

Arıcıların matematiği kullandığı yerler nereleridir?

#1 (link)
YEah_Slicht!
Ziyaretçi
YEah_Slicht! - avatarı
arıcıların matamatıgı kullandıgı yerler!
En iyi cevap Keten Prenses tarafından gönderildi

Arılar doğanın gerçekten usta mimarlarıdırlar. Kesiti düzgün altıgenler oluşturan prizma şeklindeki petek gözlerinin dipleri bir piramit oluşturarak sona ererler. Kovanlardaki şekliyle dik duran her petekte, petek gözleri yatayla sabit bir açı yapacak şekilde inşa edilirler. Her bir gözün derinliği 3 santimetre, duvar kalınlığı ise milimetrenin yüzde beşi kadardır. Bu kadar ince duvar kalınlığına rağmen altıgen yapı nedeniyle büyük bir direnç kazanırlar ve arıların depoladıkları kilolarca balı rahatlıkla taşıyabilirler. Arıların petek gözlerini kusursuz bir şekilde altıgen yapmalarının başka sebepleri de vardır. Eğer beşgen, sekizgen veya daire şekillerini seçselerdi bitişik gözler arasında boşluklar kalacak, işçi arılar fazla mesai yaparak ve daha fazla balmumu harcayarak bu boşlukları doldurmak zorunda kalacaklardı.Gerçi üçgen veya kare yapsalardı bu boşluklar olmayacaktı ama altıgenin bir başka özelliği daha vardır. Alanları aynı olan üçgen, kare ve altıgen şekillerden toplam kenar uzunluğu en az olanı altıgendir. Yani aynı miktarda balmumu ile daha çok altıgen odacığın kenarı çevrilebilir. Aslında matematiğin, geometrinin ve simetrinin en kusursuz örnekleri sadece bal peteklerinde değil doğanın her yerinde görülebilir. Ancak bizler günlük hayatın hayhuyu içinde bu mükemmelliğin farkına varamayız. Kar taneciklerinin hepsi birbirlerinden farklı altıgen şekilleri, tohumların dizilişlerindeki spiraller, mineral kristallerindeki geometrik yapılar ve değişmez açılar, tavus kuşunun kuyruğundaki lekeler, sümüklü böceğin kabuğu, örümcek ağları, tüm bunlar görüntü olarak kusursuz olmalarına karşın müthiş bir matematik düzen de gösterirler. Papatyanın ortasındaki sağ spirallerin sayısının 21, sol spirallerin ise 34 olması, Himalaya çamının kozalaklarındaki pulların aynı şekilde 5 sağ, 8 sol spiral oluşturması, kara çam kozalaklarında ve ananas meyvesinde ise 8 sağ, 13 sol spiral bulunması tesadüf değildir elbette. Leonardo Fibonacci (1170-1250) isimli büyük matematik ustası ta o yıllarda, her sayının kendinden önce gelen iki sayının toplamı olduğu bir dizi geliştirdi; l, l, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,..................... Dikkat ederseniz yukarıda verilen sağ, sol spiral sayıları, bu dizide artarda yer alan sayılardır. Bu dizinin ilginç bir yanı da on ikinci terimden yani 144'den sonraki ardışık sayıların birbirlerine oranlarının (233/144 = 377/233 = 610/377) 1,61803 olması, 5. Sayı ile 12. Sayı arasındaki oranların da bu sayıya çok yakın olmalarıdır. 15. Yüzyılın ikinci yarısında yaşamış matematikçi Pacial Luca tabiatta daima kenarları arasında 1,618 oranı bulunan bir dikdörtgen bulunduğunu, hatta insan vücudunun da bu oranda yaratıldığını ileri sürüyor, mahkeme tarafından yakılma tehlikesine karşı da Leonardo da Vinci'nin çizimlerini göstererek meydan okuyordu. Zamanın heykeltraşlarının heykellerinde de bu oranı kullandıklarını belirtmeleri üzerine bu oran Tanrısal Oran' olarak da anılmaya başlandı.
Benzer Konular: Etiketler:
  • cokgenlerin kullanildigi alanlar
  • cokgenlerin kullanildigi yerler
  • dortgenlerin kullanildigi yerler
  • matematigi kullandigimiz yerler
  • matematigin kullanildigi yerler
Rapor Et
Reklam
Eski 15 Aralık 2008, 23:18

Arıcıların matematiği kullandığı yerler nereleridir?

#2 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
Arılar doğanın gerçekten usta mimarlarıdırlar. Kesiti düzgün altıgenler oluşturan prizma şeklindeki petek gözlerinin dipleri bir piramit oluşturarak sona ererler. Kovanlardaki şekliyle dik duran her petekte, petek gözleri yatayla sabit bir açı yapacak şekilde inşa edilirler. Her bir gözün derinliği 3 santimetre, duvar kalınlığı ise milimetrenin yüzde beşi kadardır. Bu kadar ince duvar kalınlığına rağmen altıgen yapı nedeniyle büyük bir direnç kazanırlar ve arıların depoladıkları kilolarca balı rahatlıkla taşıyabilirler. Arıların petek gözlerini kusursuz bir şekilde altıgen yapmalarının başka sebepleri de vardır. Eğer beşgen, sekizgen veya daire şekillerini seçselerdi bitişik gözler arasında boşluklar kalacak, işçi arılar fazla mesai yaparak ve daha fazla balmumu harcayarak bu boşlukları doldurmak zorunda kalacaklardı.Gerçi üçgen veya kare yapsalardı bu boşluklar olmayacaktı ama altıgenin bir başka özelliği daha vardır. Alanları aynı olan üçgen, kare ve altıgen şekillerden toplam kenar uzunluğu en az olanı altıgendir. Yani aynı miktarda balmumu ile daha çok altıgen odacığın kenarı çevrilebilir. Aslında matematiğin, geometrinin ve simetrinin en kusursuz örnekleri sadece bal peteklerinde değil doğanın her yerinde görülebilir. Ancak bizler günlük hayatın hayhuyu içinde bu mükemmelliğin farkına varamayız. Kar taneciklerinin hepsi birbirlerinden farklı altıgen şekilleri, tohumların dizilişlerindeki spiraller, mineral kristallerindeki geometrik yapılar ve değişmez açılar, tavus kuşunun kuyruğundaki lekeler, sümüklü böceğin kabuğu, örümcek ağları, tüm bunlar görüntü olarak kusursuz olmalarına karşın müthiş bir matematik düzen de gösterirler. Papatyanın ortasındaki sağ spirallerin sayısının 21, sol spirallerin ise 34 olması, Himalaya çamının kozalaklarındaki pulların aynı şekilde 5 sağ, 8 sol spiral oluşturması, kara çam kozalaklarında ve ananas meyvesinde ise 8 sağ, 13 sol spiral bulunması tesadüf değildir elbette. Leonardo Fibonacci (1170-1250) isimli büyük matematik ustası ta o yıllarda, her sayının kendinden önce gelen iki sayının toplamı olduğu bir dizi geliştirdi; l, l, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,..................... Dikkat ederseniz yukarıda verilen sağ, sol spiral sayıları, bu dizide artarda yer alan sayılardır. Bu dizinin ilginç bir yanı da on ikinci terimden yani 144'den sonraki ardışık sayıların birbirlerine oranlarının (233/144 = 377/233 = 610/377) 1,61803 olması, 5. Sayı ile 12. Sayı arasındaki oranların da bu sayıya çok yakın olmalarıdır. 15. Yüzyılın ikinci yarısında yaşamış matematikçi Pacial Luca tabiatta daima kenarları arasında 1,618 oranı bulunan bir dikdörtgen bulunduğunu, hatta insan vücudunun da bu oranda yaratıldığını ileri sürüyor, mahkeme tarafından yakılma tehlikesine karşı da Leonardo da Vinci'nin çizimlerini göstererek meydan okuyordu. Zamanın heykeltraşlarının heykellerinde de bu oranı kullandıklarını belirtmeleri üzerine bu oran Tanrısal Oran' olarak da anılmaya başlandı.
Rapor Et
Eski 15 Aralık 2008, 23:19

Arıcıların matematiği kullandığı yerler nereleridir?

#3 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
Bal Peteğindeki Matematik Sırlar

* Büyük bir alanı, daha küçük parçalara en iktisatlı şekilde bölmeyi arılar nereden öğrendi?
* Altıgenin, eşkenar üçgen ve kareye nazaran avantajlı tarafları…
* Altıgen bir prizma şeklinde olan peteğin, açık ucunu kapatmak için kullanılacak balmumunun israf edilmemesi için, nasıl bir geometri uygulanmalıdır?

* Arıların, azamî tasarruf prensibi, geometri bilgisi ve mimarî hususunda gösterdikleri hayretengiz davranışlarının kaynağını “içgüdü” tabiriyle izah edebilir miyiz? Yoksa buna Sevk-i İlâhî mi demeliyiz?
peteklerBal peteğinin enteresan mimarisi tarih boyunca insanların ilgisini çekmiştir. Yan yana altıgenlerden oluşan bu yapı, son derece hassas olup ortalama duvar kalınlıkları 0,1 mm’dir. Bu ortalama değerden sapma ise, en fazla 0,002 mm kadardır. Peteklerin inşasında uyulan geometri kaidelerinin ne derece ideal olduğunu anlayabilmek için, matematikî bir bakış açısına sahip olmak gerekir.
Daire, belli bir sabit alanı çevreleyen en kısa kenar uzunluğuna sahip geometrik şekildir. Meselâ alanı 10 cm2 olan kare ve dairenin çevre uzunlukları karşılaştırıldığında, dairenin çevresinin daha kısa olduğu görülür. Ancak bal peteğinin inşasında durum tam olarak böyle değildir. Burada bal peteğinin geniş çerçevesi, eşit ve daha küçük alanlara bölünecektir ve bölme işleminde en az çevre uzunluğuna sahip şekil kullanılacaktır. Çerçeveyi, eşit alanlara sahip küçük daireler şeklindeki peteklere bölmek istersek, yukarıda ifade edildiği gibi en kısa kenar özelliği sağlanacak, fakat dairelerin kenarları arasında kalan boşluklar için daha fazla mum harcanmış olacaktır.
Halbuki bu problemi, en kısa kenar uzunluğu ve en az malzemeyle (mum) çözmek için geometri prensiplerine müracaat ettiğimizde, peteklerin bölünmesinde çokgenlerin kullanılması gerektiği görülecektir. Kenar sayısı n olan aynı alana sahip çokgenler düşünelim. Bunların içerisinde en kısa çevre uzunluğuna sahip olanı düzgün n-gendir. Düzgün ile kastedilen, bütün kenarları ve iç açıları eşit olandır. Bu tip bir çokgen, her zaman bir dairenin içine çizilebilir ve çokgenin köşeleri çemberin çevresi üzerindedir. Böyle bir yapının ideal daire şekline yakın olmasından dolayı çevre uzunluğu en az olmaktadır. Meselâ eşit alanlı üçgenler içerisinde en kısa çevre uzunluğu eşkenar üçgende, dörtgenler arasında en kısa çevre uzunluğu ise karede elde edilir. Benzer şekilde beşgen ve altıgenler kendi aralarında kıyaslanırsa, en kısa çevre uzunluğu düzgün beşgen ve altıgende elde edilebilir.
Akla gelebilecek ilk soru, belli bir alanı bölerken hangi düzgün çokgeni kullanmamız gerektiğidir. Bir daire ve içerisine çizilmiş n kenarlı bir düzgün çokgenin bir kısmı Şekil 1′de gösterilmiştir. Şekilden de görülebileceği gibi çokgenin bir iç açısı 180-360/n derecedir. Verilen bir geniş alanı küçük alanlara bölmek istediğimizde, komşu çokgenlerin birbirlerine tam oturması ve aralarında boşluk kalmaması gerekir. Bunun olabilmesi için birbirine yaslanan komşu çokgen köşelerine ait iç açıları toplamı 360 derece olmalıdır (Şekil 2). Başka bir ifadeyle bir iç açının tam sayı bir katı 360 derece olmalıdır. N komşu iç açıların adedini temsil etmek üzere, bu durumda aşağıdaki denklemi yazabiliriz (N tamsayıdır):
N (180 - 360 / n ) = 360
Buradan N çözülürse
N = 2n / (n-2)= 2 + 4 / (n-2)
ifadesi elde edilir. Bulmak istediğimiz, hangi kenar sayısı n için, N değeri tamsayı olmaktadır. Tamsayı değerleri, sadece n=3, 4 ve 6 için elde edebiliriz ve 6′dan büyük hiçbir rakam için tamsayı elde edilemez. Yani bir alanı boşluksuz bölmek istersek, ya üçgen, ya dörtgen veya altıgen kullanmalıyız. Kenar sayısı 6′dan fazla olan düzgün bir çokgen ile boşluksuz bölme mümkün değildir. Benzer şekilde düzgün beşgenler de uygun bir çözüm değildir. Şekil 3′te üç düzgün beşgenin yan yana getirilmesi ile 36O açılı boş bir alan ortaya çıkmıştır. Halbuki altıgenler boşluksuz yan yana getirilebilirler (Şekil 4). Ayrıca eşit alanlı üçgen, dörtgen ve altıgen birbiri ile karşılaştırıldığında, en az çizgi uzunluğu altıgende olmaktadır. Dolayısı ile en az balmumu sarfiyatı bu şekilde bölme kullanılarak elde edilebilir.

Matematikçiler ayrıca, kenarları doğru olmayan, eğri olan çokgenlerin daha iyi olup olmadığını da araştırdılar. Kenar eğri olunca, bir çokgende dışbükey şekil elde edilirken komşu çokgende ister istemez içbükey şekil elde edilmektedir. Dışbükey eğri ile elde edilen avantajı (daire parçasına daha fazla benzemesinden dolayı) içbükey eğriden gelen daha fazla dezavantaj yok etmekte ve net olarak bir kazanç elde edilememektedir. Michigan Üniversitesi’nden Thomas Hales 1999′da tartışmalara son noktayı koydu ve bir alanı eşit küçük alanlara ayırmak istediğimizde, en ideal şeklin düzgün altıgen olduğunu ispatladı. Her ne kadar altıgen şeklin, ideal bir şekil olduğu uzun zamandır belirtilse de, bunun sağlam bir matematik ispatı yapılamamıştı. 1999′da ispatını ancak yapabildiğimiz bir çözümü, arıların milyonlarca yıldır şaşırmadan Sevk-i İlâhî ile uygulamaları, Allah’ın ilhâmından başka ne olabilir ki… Şâyet arıların petek inşa teknikleri ilk yaratıldıkları dönemden bu yana evrimleşerek gelseydi, fosil kayıtlarında, altıgen dışında başka geometrik şekillere de rastlanması gerekirdi. Halbuki başka bir şekildeki bal peteğinin kullanıldığına dâir ipucuna rastlanmamıştır. Bizzat Charles Darwin bal peteğini, işçilik ve balmumunu mükemmel ekonomize eden bir mühendislik harikası olarak tanımlamıştır.
Şimdiye kadar probleme iki boyutlu baktık. Ancak bal peteği üç boyutlu bir cisim olup altıgen prizma şeklindedir. Altıgen prizma şeklindeki petekler iki tabaka hâlinde olup, bir uçları açık, diğer kapalı uçları ise sırt sırta yerleştirilmiştir (Şekil 5). Çerçeve yere dik gelecek şekilde yerleştirildiğinde, prizmalar yatay ile 13O’lik bir eğim açısı yapacak şekilde inşa edilmiş olurlar ve bu açı balın akmaması için yeterli olan en küçük açıdır. Acaba peteğin kapalı ucunda en az balmumu sarfiyatı için nasıl bir geometri olmalıdır? 1964′te matematikçi Fejes Toth, en ideal kapatmanın iki altıgen ve iki kare ile sağlanabileceğini gösterdi (Şekil 6a). Arılar ise biraz farklı olarak üç eşkenar dörtgenle kapatma yapmaktaydılar (Şekil 6b). Eşkenar dörtgenlerin iç açıları 70,5O ve 109,5O olup, üç eşkenar dörtgen çatısı şekli için en ideal matematik çözümü vermektedir. Görünüşte arıların uygulamasında iki altıgen ve iki kareye göre alanda % 0,035′lik çok küçük bir kayıp olmaktaydı. Ancak gözden kaçırılan bir nokta vardı, o da hesaplamalarda duvar kalınlığı son derece ince alınıyordu.
Araştırmacılar, Toth’un matematik modelini tecrübe etmek üzere sıvı hava köpüğü kullandılar. İki cam arasına, iki tabaka olacak şekilde 2 mm çaplı kabarcıklara sahip deterjan çözeltisi pompaladılar. Camlarla temas eden kabarcıklar altıgen yapılara dönüştü. Ortada iki tabakanın sınırında ise Toth’un öne sürdüğü iki altıgen ve iki kare şeklindeki yapı oluştu. Kabarcık duvarları biraz kalınlaştırıldığında ise, enteresan bir durum ortaya çıktı ve yapı birden arılarda olduğu gibi üç eşkenar dörtgen yapısına dönüştü. Deney, arılara en ideal şeklin ilham edildiğini teyit etmekteydi.
Kutlu Beyan’da bal arısının davranışlarına da yer verilmektedir: “Rabb’in bal arısına şöyle vahyetti: Dağlardan ağaçlardan ve insanların kurdukları çardaklardan kendine göz göz ev edin. Sonra da her türlü üründen ye de, Rabb’inin sana yayılman için belirlediği yolları tut. Onların karınlarından renkleri çeşit çeşit bir şerbet çıkar ki onda insanlara şifa vardır. Elbette düşünen kimseler için bunda alacak ibret vardır.” (Nahl, 68, 69) .
Prof.Dr. M.Sami POLATÖZ
Son Düzenleyen Keten Prenses; 23 Nisan 2009 @ 20:27.
Rapor Et
Eski 5 Ocak 2009, 15:57

Arıcıların matematiği kullandığı yerler nereleridir?

#4 (link)
nimo1989
Ziyaretçi
nimo1989 - avatarı
saolllll
Rapor Et
Eski 5 Ocak 2009, 16:41

Arıcıların matematiği kullandığı yerler nereleridir?

#5 (link)
nimo1989
Ziyaretçi
nimo1989 - avatarı
Bundan 100 alacaktım öğretmen verdi konuyu çoooooooooook saollllll

Son Düzenleyen nimo1989; 5 Ocak 2009 @ 16:42. Sebep: Mesajlar Otomatik Olarak Birleştirildi
Rapor Et
Eski 30 Aralık 2009, 10:44

Arıcıların matematiği kullandığı yerler nereleridir?

#6 (link)
Misafir
Ziyaretçi
Misafir - avatarı
sekizgenin ozellikleri nelerdir? ben bunu öğrenmeye geldim
Rapor Et
Eski 21 Mart 2010, 12:49

Arıcıların matematiği kullandığı yerler nereleridir?

#7 (link)
Misafir
Ziyaretçi
Misafir - avatarı
çokgenlerin günlük olarak kullandığımız yerler
Rapor Et
Eski 30 Mart 2010, 23:23

Arıcıların matematiği kullandığı yerler nereleridir?

#8 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Alıntı:
cokgenlerin kullanildigi yerler
çokgenlerin kullanıldıgıyerler
Rapor Et
Eski 5 Nisan 2011, 18:32

soru

#9 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Alıntı:
sekizgenin ozellikleri ile ilgili daha fazla bilgi istiyorum
hadi arkadaşlar
Rapor Et
Cevap Yaz Yeni Konu Aç
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.242 saniyede (81.47% PHP - 18.53% MySQL) 17 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +3 - Saat: 01:04
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi