Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Sohbet (Flash Chat) Forumda Ara

Merkezi eğilim ve yayılma ölçüleri nelerdir?

Bu konu Soru-Cevap forumunda Ziyaretçi tarafından 17 Aralık 2008 (15:44) tarihinde açılmıştır.FacebookFacebook'ta Paylaş
65390 kez görüntülenmiş, 37 cevap yazılmış ve son mesaj 12 Nisan 2014 (18:21) tarihinde gönderilmiştir.
  • 5 üzerinden 2.50  |  Oy Veren: 12      
Cevap Yaz Yeni Konu Aç
Bu konuyu arkadaşlarınızla paylaşın:    « Önceki Konu | Sonraki Konu »      Yazdırılabilir Sürümü GösterYazdırılabilir Sürümü Göster    AramaBu Konuda Ara  
Eski 17 Aralık 2008, 15:44

Merkezi eğilim ve yayılma ölçüleri nelerdir?

#1 (link)
Ziyaretçi
Ziyaretçi
Ziyaretçi - avatarı
merkezi eğilim ve yayılma ölçütleri nedir?
En iyi cevap Blue Blood tarafından gönderildi

MERKEZİ YAYILMA (DAĞILIM) ÖLÇÜLERİ

Bir grubun belli bir özelliği yönünden yeterince tanıyabilmek ve gruplar arasında çok yönlü karşılaştırmalar yapabilmek için merkezî eğilim ölçüleri yanında yayılma ölçülerine de ihtiyaç duyulur. Verilerin birbirlerinden ne kadar ayrıldıkları veya bir doğru üzerinde yayılmalarının nasıl olduğu da önemlidir. Örneğin iki ayrı sınıfta öğrencilerin ölçme ve değerlendirme dersi not ortalaması 40 olsun. Buna dayanarak her iki sınıfın başarı düzeyleri aynıdır diyebilir miyiz? İlk etapta bu soruya “evet” denilebilir. Ancak bir de şunları bilelim: Bir sınıfta notlar 35-40 puan arasında iken, diğer sınıfta 15-75 arasında olsun. Bu durumda her iki sınıfın düzeylerinin farklı olduğu; aritmetik ortalamaların da başarı düzeyini açıklamakta pek yeterli olmadığı anlaşılacaktır. Böyle durumlarda merkezî yığılma ölçülerinin yanı sıra merkezî yayılma ölçülerine de ihtiyaç duyulur. Bir merkezî yığılma (eğilim) ölçüsünün, bir grup ölçümü ne derece temsil ettiğini bir karara bağlamak ve her hangi bir ölçümün, grup ortalamasının ne kadar altında ve üstünde olduğunu (yani ölçümlerin grup içindeki yerini) göstermek için merkezî yayılma ölçüleri kullanılır.
Genişlik (ranj), standart sapma (ss), ortalama sapma ve çeyrek sapma merkezî yayılma ölçüleridir.

Genişlik (Ranj):
Yayılma ölçüleri içinde en kaba ve hesaplanışı en kolay olanıdır. Gözlenen ölçümlerin en büyüğü ile en küçüğü arasındaki fark ya da açıklık bize ranjı verir. Ranj özellikle veri sayısının çok olduğu durumlarda güvenilir değildir.
Örnek:
Matematik sınavında bir grup öğrenci 23, 34, 37, 45, 50, 56, 57, 70, 77, 86 ve 91 puan almışlardır. Dağılımın ranjını bulalım:

Ranj=91-23=68’dir.
Standart Sapma
Bir dizi ölçümün gösterdiği değişimin en güvenilir ölçüsü standart sapmadır. İstatistikte en çok kullanılan yayılma ölçüsüdür. Standart sapma bir dağılımda ölçme sonuçlarının aritmetik ortalamaya göre yayılmanın bir ölçüsünü verir. Formülle gösterirsek;
image073 image075
Örnek:
Aşağıda bir grup öğrencinin matematik dersinden aldıkları puanlar verilmiştir. Dağılımın standart sapmasını hesaplayınız.
30
70
60
30
70
65
55
70
40
50
20
50
80
60
30
35
70
30
65
40
55
50
60
40
40
20
30
10
55
20
n=30
Σx=1400
x=46,66
Σx²=75250

image077 image079=image081=image083
image085=image087
alıntıdır
Rapor Et
Reklam
Eski 17 Aralık 2008, 15:58

Merkezi eğilim ve yayılma ölçüleri nelerdir?

#2 (link)
Eski Üyelerin Ruhları
Blue Blood - avatarı
MERKEZİ YAYILMA (DAĞILIM) ÖLÇÜLERİ

Bir grubun belli bir özelliği yönünden yeterince tanıyabilmek ve gruplar arasında çok yönlü karşılaştırmalar yapabilmek için merkezî eğilim ölçüleri yanında yayılma ölçülerine de ihtiyaç duyulur. Verilerin birbirlerinden ne kadar ayrıldıkları veya bir doğru üzerinde yayılmalarının nasıl olduğu da önemlidir. Örneğin iki ayrı sınıfta öğrencilerin ölçme ve değerlendirme dersi not ortalaması 40 olsun. Buna dayanarak her iki sınıfın başarı düzeyleri aynıdır diyebilir miyiz? İlk etapta bu soruya “evet” denilebilir. Ancak bir de şunları bilelim: Bir sınıfta notlar 35-40 puan arasında iken, diğer sınıfta 15-75 arasında olsun. Bu durumda her iki sınıfın düzeylerinin farklı olduğu; aritmetik ortalamaların da başarı düzeyini açıklamakta pek yeterli olmadığı anlaşılacaktır. Böyle durumlarda merkezî yığılma ölçülerinin yanı sıra merkezî yayılma ölçülerine de ihtiyaç duyulur. Bir merkezî yığılma (eğilim) ölçüsünün, bir grup ölçümü ne derece temsil ettiğini bir karara bağlamak ve her hangi bir ölçümün, grup ortalamasının ne kadar altında ve üstünde olduğunu (yani ölçümlerin grup içindeki yerini) göstermek için merkezî yayılma ölçüleri kullanılır.
Genişlik (ranj), standart sapma (ss), ortalama sapma ve çeyrek sapma merkezî yayılma ölçüleridir.

Genişlik (Ranj):
Yayılma ölçüleri içinde en kaba ve hesaplanışı en kolay olanıdır. Gözlenen ölçümlerin en büyüğü ile en küçüğü arasındaki fark ya da açıklık bize ranjı verir. Ranj özellikle veri sayısının çok olduğu durumlarda güvenilir değildir.
Örnek:
Matematik sınavında bir grup öğrenci 23, 34, 37, 45, 50, 56, 57, 70, 77, 86 ve 91 puan almışlardır. Dağılımın ranjını bulalım:

Ranj=91-23=68’dir.
Standart Sapma
Bir dizi ölçümün gösterdiği değişimin en güvenilir ölçüsü standart sapmadır. İstatistikte en çok kullanılan yayılma ölçüsüdür. Standart sapma bir dağılımda ölçme sonuçlarının aritmetik ortalamaya göre yayılmanın bir ölçüsünü verir. Formülle gösterirsek;
image073 image075
Örnek:
Aşağıda bir grup öğrencinin matematik dersinden aldıkları puanlar verilmiştir. Dağılımın standart sapmasını hesaplayınız.
30
70
60
30
70
65
55
70
40
50
20
50
80
60
30
35
70
30
65
40
55
50
60
40
40
20
30
10
55
20
n=30
Σx=1400
x=46,66
Σx²=75250

image077 image079=image081=image083
image085=image087
alıntıdır
Rapor Et
Eski 17 Aralık 2008, 15:59

Merkezi eğilim ve yayılma ölçüleri nelerdir?

#3 (link)
Eski Üyelerin Ruhları
Blue Blood - avatarı
MERKEZİ YIĞILMA (EĞİLİM) ÖLÇÜLERİ
Merkezî yığılma ölçüleri, bir veri grubunun dağılımında, verilerin etrafında yığılma eğilimi gösterdikleri ve veri grubunu “özetleyen” değerlerdir. Örneğin “sınıfın Türkçe dersi ortalaması 75” dediğimizde, bu notun o sınıftaki tüm öğrencilerin Türkçe dersi notlarını temsil ettiğini düşünürüz. Aritmetik ortalama (image002), ortanca (ortn., Medyan), mod, geometrik ortalama (GO), harmonik ortalama (HO) ve karesel ortalama (KO) merkezî eğilim ölçüleridir.
Aritmetik Ortalama
image004
a) Aritmetik ortalamanın ham verilerden hesaplanması
Merkezî yığılma ölçülerinin en çok kullanılanıdır. Genel olarak “ortalama” olarak da isimlendirilir. Bir grup verinin aritmetik ortalaması, verilerin toplamının toplam veri sayısına bölümüne eşittir. Formülle gösterirsek;
image006 Ya da image008
En istikrarlı merkezî eğilim ölçüsü isteniyorsa ve dağılım çok çarpık değilse merkezî eğilim ölçüsü olarak aritmetik ortalama kullanılır.
Örnek-1:
Bir anaokulu sınıfında öğrencilerin ağırlıkları 12, 13, 19, 17, 19kg olarak hesaplanmış. Ortalamasını hesaplayınız.
image010kg
Örnek-2:
6 kişilik bir voleybol takımında oyuncuların boy uzunlukları 196, 179, 182, 187, 193, 192 cm.’dir. Takımın boy ortalamasını bulalım:
image012
b) Aritmetik ortalamanın tekrarlanan verilerden hesaplanması

Ağırlık
Frekans
fx
24
2
48
23
3
69
22
3
66
21
3
63
20
3
60
19
5
95
18
6
108
17
2
34
16
6
96
15
4
60
14
0
0
13
2
26
12
1
12
N=40
Σfx=737

image014
image016kg
c) Aritmetik ortalamanın gruplandırılmış verilerden hesaplanması
Puanlar
Frekans
Orta Nokta xo
fxo
85–89
2
87
174
80–84
1
82
82
75–79
4
77
308
70–74
9
72
648
65–69
13
67
871
60–64
26
62
1612
55–59
19
57
1083
50–54
12
52
624
45–49
8
47
376
40–44
3
42
126
35–39
2
37
74
30–34
1
32
32
N=100
Σfxo=6010
Σfx=61,10
image018
image020
Geometrik Ortalama
Bir dizideki ölçümlerin birbirleriyle çarpılıp, çarpılan ölçün sayısı derecesinde kökünün alınmasına eşittir. GO’nun hesaplanmasında değerler sıfırdan büyük olmak zorundadır.
image022
Geometrik ortalama
  • Ölçümler arasındaki değişme oranı
    <li class="MsoNormal">
    Gelişme ve büyüme hızı
    <li class="MsoNormal">
    İndeks saptamada kullanılır.
ÖRNEK:
Bir şehirde ev kiraları ortalama olarak 1940 yılında 100 TL.; 1950 yılında 200 TL.; 1960 yılında 600 TL.; olarak gerçekleşmiştir. Söz konusu şehirde ortalama artış miktarı nedir; hesaplayınız.
1940 1950 1960
100 (2 kat) 200 (3 kat) 600
image024
Harmonik Ortalama
Ölçümlerin terslerinin aritmetik ortalamasının tersidir. Oranların özellikle de zaman oranlarının ortalamalarının hesaplanmasında kullanılır.
image026
image028
ÖRNEK:
Bir koşucu koştuğu 800m’lik parkurun ilk 400m’sini 80 saniyede, ikinci 400m’lik mesafesini ise 100 saniyede koşmuştur. Koşucunun parkurdaki ortalama hızını hesaplayınız.

İlk 100m’de 5m/sn hız
İkinci 100m’de 4m/sn hız

image030

Kısa yol (oranlama yöntemi)
image032
Ortalamaların Ortalaması
image034 Ya da image036
Ortanca (Medyan)
a) Ortancanın ham verilerden hesaplanması
Ortanca (ortn., medyan): Veriler sıraya konulduktan sonra tam ortaya düşen (yani verileri tam ortadan iki eşit parçaya bölen) değerdir. Bir veri grubunu tam ortadan ikiye ayıran değerdir.Formülle gösterirsek:
a)veriler tek sayıda ve frekanslar “1”se
image038’nci değer.
b)veriler çift sayıda ve frekanslar “1”se
image040’nci değer.
Medyan; aritmetik ortalamayı hesaplamak için yeterli süre yoksa, dağılımın tam orta noktası isteniyorsa, uç puanların ortalamayı büyük ölçüde etkilemesi söz konusu ise ortanca hesaplanır. Hesaplamaya başlanmadan önce veriler büyüklük sırasına konulur.
Örnek-1:
Bir grup öğrencinin kompozisyon sınavından aldıkları notların (100, 98, 93, 45, 34) ortancasını bulalım.
Veriler tek sayıda (n=5) ve frekanslar “1”

image041 image043 image045. değer (Ortn=93).
Örnek-2:
Bir grup öğrenci İngilizce sınavdan 65, 75, 72, 50, 34, 59 puanlarını almış olsunlar. Dağılımın ortancasını hesaplayalım.
(Önce veriler büyüklük sırasına konulacak)
Veriler çift sayıda (n=6) ve frekanslar “1”
image046 image048 image045. değer.
Baştan üçüncü değer 59, sonradan üçüncü değer 65 olmaktadır. Bu durumda ortanca;
image051 image053 olarak bulunur.
b) Ortancanın gruplandırılmış verilerden hesaplanması
Puanlar
Frekans
tf (yf)
85–89
2
100
80–84
1
98
75–79
4
97
70–74
9
93
65–69
13
84
60–64
26
71
55–59
19
45
50–54
12
26
45–49
8
14
40–44
3
6
35–39
2
3
30–34
1
1
N=100

image055
L: Ortancanın içine rastladığı aralığın alt sınırı (59,5)
tfa: ortancanın rastladığı aralığın altındaki toplam frekans (yığılmalı frekans) (45)
fb: Ortancanın içine rastladığı aralığın frekansı (26)
a: aralık katsayısı (29,5 – 34,5 = 5)

  • Grup 100 kişi; o halde medyan 100/2=50. kişi.
  • Toplam frekans (tf) sütununda 50. kişinin 60-64 aralığında olduğu anlaşılıyor.
image057
image059
image061
(Ortanca aynı zamanda image063 veya image065 olarak da isimlendirilir. Bir diğer deyişle medyan 50. yüzdeliktir. )
Yüzdelikler

image067
image069
image071
L: Yüzdeliğin içine rastladığı aralığın alt sınırı
tfa: Yüzdeliğin rastladığı aralığın altındaki toplam frekans (yığılmalı frekans)
fb: Yüzdeliğin içine rastladığı aralığın frekansı
a: aralık katsayısı
alıntıdır.
Rapor Et
Eski 1 Ocak 2009, 18:51

merkezi eğilim ve yayılım ölçüleri

#4 (link)
Ziyaretçi
Ziyaretçi
Ziyaretçi - avatarı
bir histograma göre 45 günlük süt sipariş veren markete ömrü 30 gün olan sütlerin satışı
Rapor Et
Eski 30 Mart 2009, 15:27

Merkezi eğilim ve yayılım ölçüleri nelerdir?

#6 (link)
berkayaslan
Ziyaretçi
berkayaslan - avatarı
merkezi eğilim ve yayılım ölçüleri nelerdir?
Rapor Et
Eski 30 Mart 2009, 23:27

Merkezi eğilim ve yayılma ölçüleri nelerdir?

#7 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
Alıntı:
angel_fairy adlı kullanıcıdan alıntı Mesajı Görüntüle

MERKEZİ YAYILMA (DAĞILIM) ÖLÇÜLERİ

Bir grubun belli bir özelliği yönünden yeterince tanıyabilmek ve gruplar arasında çok yönlü karşılaştırmalar yapabilmek için merkezî eğilim ölçüleri yanında yayılma ölçülerine de ihtiyaç duyulur. Verilerin birbirlerinden ne kadar ayrıldıkları veya bir doğru üzerinde yayılmalarının nasıl olduğu da önemlidir. Örneğin iki ayrı sınıfta öğrencilerin ölçme ve değerlendirme dersi not ortalaması 40 olsun. Buna dayanarak her iki sınıfın başarı düzeyleri aynıdır diyebilir miyiz? İlk etapta bu soruya “evet” denilebilir. Ancak bir de şunları bilelim: Bir sınıfta notlar 35-40 puan arasında iken, diğer sınıfta 15-75 arasında olsun. Bu durumda her iki sınıfın düzeylerinin farklı olduğu; aritmetik ortalamaların da başarı düzeyini açıklamakta pek yeterli olmadığı anlaşılacaktır. Böyle durumlarda merkezî yığılma ölçülerinin yanı sıra merkezî yayılma ölçülerine de ihtiyaç duyulur. Bir merkezî yığılma (eğilim) ölçüsünün, bir grup ölçümü ne derece temsil ettiğini bir karara bağlamak ve her hangi bir ölçümün, grup ortalamasının ne kadar altında ve üstünde olduğunu (yani ölçümlerin grup içindeki yerini) göstermek için merkezî yayılma ölçüleri kullanılır.
Genişlik (ranj), standart sapma (ss), ortalama sapma ve çeyrek sapma merkezî yayılma ölçüleridir.

Genişlik (Ranj):
Yayılma ölçüleri içinde en kaba ve hesaplanışı en kolay olanıdır. Gözlenen ölçümlerin en büyüğü ile en küçüğü arasındaki fark ya da açıklık bize ranjı verir. Ranj özellikle veri sayısının çok olduğu durumlarda güvenilir değildir.
Örnek:
Matematik sınavında bir grup öğrenci 23, 34, 37, 45, 50, 56, 57, 70, 77, 86 ve 91 puan almışlardır. Dağılımın ranjını bulalım:

Ranj=91-23=68’dir.
Standart Sapma
Bir dizi ölçümün gösterdiği değişimin en güvenilir ölçüsü standart sapmadır. İstatistikte en çok kullanılan yayılma ölçüsüdür. Standart sapma bir dağılımda ölçme sonuçlarının aritmetik ortalamaya göre yayılmanın bir ölçüsünü verir. Formülle gösterirsek;
image073 image075
Örnek:
Aşağıda bir grup öğrencinin matematik dersinden aldıkları puanlar verilmiştir. Dağılımın standart sapmasını hesaplayınız.
30
70
60
30
70
65
55
70
40
50
20
50
80
60
30
35
70
30
65
40
55
50
60
40
40
20
30
10
55
20
n=30
Σx=1400
x=46,66
Σx²=75250

image077 image079=image081=image083
image085=image087
alıntıdır
Alıntı:
angel_fairy adlı kullanıcıdan alıntı Mesajı Görüntüle

MERKEZİ YIĞILMA (EĞİLİM) ÖLÇÜLERİ
Merkezî yığılma ölçüleri, bir veri grubunun dağılımında, verilerin etrafında yığılma eğilimi gösterdikleri ve veri grubunu “özetleyen” değerlerdir. Örneğin “sınıfın Türkçe dersi ortalaması 75” dediğimizde, bu notun o sınıftaki tüm öğrencilerin Türkçe dersi notlarını temsil ettiğini düşünürüz. Aritmetik ortalama (image002), ortanca (ortn., Medyan), mod, geometrik ortalama (GO), harmonik ortalama (HO) ve karesel ortalama (KO) merkezî eğilim ölçüleridir.
Aritmetik Ortalama
image004
a) Aritmetik ortalamanın ham verilerden hesaplanması
Merkezî yığılma ölçülerinin en çok kullanılanıdır. Genel olarak “ortalama” olarak da isimlendirilir. Bir grup verinin aritmetik ortalaması, verilerin toplamının toplam veri sayısına bölümüne eşittir. Formülle gösterirsek;
image006 Ya da image008
En istikrarlı merkezî eğilim ölçüsü isteniyorsa ve dağılım çok çarpık değilse merkezî eğilim ölçüsü olarak aritmetik ortalama kullanılır.
Örnek-1:
Bir anaokulu sınıfında öğrencilerin ağırlıkları 12, 13, 19, 17, 19kg olarak hesaplanmış. Ortalamasını hesaplayınız.
image010kg
Örnek-2:
6 kişilik bir voleybol takımında oyuncuların boy uzunlukları 196, 179, 182, 187, 193, 192 cm.’dir. Takımın boy ortalamasını bulalım:
image012
b) Aritmetik ortalamanın tekrarlanan verilerden hesaplanması

Ağırlık
Frekans
fx
24
2
48
23
3
69
22
3
66
21
3
63
20
3
60
19
5
95
18
6
108
17
2
34
16
6
96
15
4
60
14
0
0
13
2
26
12
1
12
N=40
Σfx=737

image014
image016kg
c) Aritmetik ortalamanın gruplandırılmış verilerden hesaplanması
Puanlar
Frekans
Orta Nokta xo
fxo
85–89
2
87
174
80–84
1
82
82
75–79
4
77
308
70–74
9
72
648
65–69
13
67
871
60–64
26
62
1612
55–59
19
57
1083
50–54
12
52
624
45–49
8
47
376
40–44
3
42
126
35–39
2
37
74
30–34
1
32
32
N=100
Σfxo=6010
Σfx=61,10
image018
image020
Geometrik Ortalama
Bir dizideki ölçümlerin birbirleriyle çarpılıp, çarpılan ölçün sayısı derecesinde kökünün alınmasına eşittir. GO’nun hesaplanmasında değerler sıfırdan büyük olmak zorundadır.
image022
Geometrik ortalama
  • Ölçümler arasındaki değişme oranı
    <li class="MsoNormal">
    Gelişme ve büyüme hızı
    <li class="MsoNormal">
    İndeks saptamada kullanılır.
ÖRNEK:
Bir şehirde ev kiraları ortalama olarak 1940 yılında 100 TL.; 1950 yılında 200 TL.; 1960 yılında 600 TL.; olarak gerçekleşmiştir. Söz konusu şehirde ortalama artış miktarı nedir; hesaplayınız.
1940 1950 1960
100 (2 kat) 200 (3 kat) 600
image024
Harmonik Ortalama
Ölçümlerin terslerinin aritmetik ortalamasının tersidir. Oranların özellikle de zaman oranlarının ortalamalarının hesaplanmasında kullanılır.
image026
image028
ÖRNEK:
Bir koşucu koştuğu 800m’lik parkurun ilk 400m’sini 80 saniyede, ikinci 400m’lik mesafesini ise 100 saniyede koşmuştur. Koşucunun parkurdaki ortalama hızını hesaplayınız.

İlk 100m’de 5m/sn hız
İkinci 100m’de 4m/sn hız

image030

Kısa yol (oranlama yöntemi)
image032
Ortalamaların Ortalaması
image034 Ya da image036
Ortanca (Medyan)
a) Ortancanın ham verilerden hesaplanması
Ortanca (ortn., medyan): Veriler sıraya konulduktan sonra tam ortaya düşen (yani verileri tam ortadan iki eşit parçaya bölen) değerdir. Bir veri grubunu tam ortadan ikiye ayıran değerdir.Formülle gösterirsek:
a)veriler tek sayıda ve frekanslar “1”se
image038’nci değer.
b)veriler çift sayıda ve frekanslar “1”se
image040’nci değer.
Medyan; aritmetik ortalamayı hesaplamak için yeterli süre yoksa, dağılımın tam orta noktası isteniyorsa, uç puanların ortalamayı büyük ölçüde etkilemesi söz konusu ise ortanca hesaplanır. Hesaplamaya başlanmadan önce veriler büyüklük sırasına konulur.
Örnek-1:
Bir grup öğrencinin kompozisyon sınavından aldıkları notların (100, 98, 93, 45, 34) ortancasını bulalım.
Veriler tek sayıda (n=5) ve frekanslar “1”

image041 image043 image045. değer (Ortn=93).
Örnek-2:
Bir grup öğrenci İngilizce sınavdan 65, 75, 72, 50, 34, 59 puanlarını almış olsunlar. Dağılımın ortancasını hesaplayalım.
(Önce veriler büyüklük sırasına konulacak)
Veriler çift sayıda (n=6) ve frekanslar “1”
image046 image048 image045. değer.
Baştan üçüncü değer 59, sonradan üçüncü değer 65 olmaktadır. Bu durumda ortanca;
image051 image053 olarak bulunur.
b) Ortancanın gruplandırılmış verilerden hesaplanması
Puanlar
Frekans
tf (yf)
85–89
2
100
80–84
1
98
75–79
4
97
70–74
9
93
65–69
13
84
60–64
26
71
55–59
19
45
50–54
12
26
45–49
8
14
40–44
3
6
35–39
2
3
30–34
1
1
N=100

image055
L: Ortancanın içine rastladığı aralığın alt sınırı (59,5)
tfa: ortancanın rastladığı aralığın altındaki toplam frekans (yığılmalı frekans) (45)
fb: Ortancanın içine rastladığı aralığın frekansı (26)
a: aralık katsayısı (29,5 – 34,5 = 5)

  • Grup 100 kişi; o halde medyan 100/2=50. kişi.
  • Toplam frekans (tf) sütununda 50. kişinin 60-64 aralığında olduğu anlaşılıyor.
image057
image059
image061
(Ortanca aynı zamanda image063 veya image065 olarak da isimlendirilir. Bir diğer deyişle medyan 50. yüzdeliktir. )
Yüzdelikler

image067
image069
image071
L: Yüzdeliğin içine rastladığı aralığın alt sınırı
tfa: Yüzdeliğin rastladığı aralığın altındaki toplam frekans (yığılmalı frekans)
fb: Yüzdeliğin içine rastladığı aralığın frekansı
a: aralık katsayısı
alıntıdır.
.
Rapor Et
Eski 30 Mart 2009, 23:32

Merkezi eğilim ve yayılma ölçüleri nelerdir?

#8 (link)
SEDEPH
Ziyaretçi
SEDEPH - avatarı
Alıntı:
berkayaslan adlı kullanıcıdan alıntı Mesajı Görüntüle

merkezi eğilim ve yayılım ölçüleri nelerdir?
Eğer bilgiler seviyenizin üzerinde ise hesaplama kısmında yardımcı olabilirim..

iyi günler..
Rapor Et
Eski 7 Aralık 2009, 16:54

merkezi eğilim ve yayılma ölçüleri

#9 (link)
Misafir
Ziyaretçi
Misafir - avatarı
şuna bakarmısınız
Rapor Et
Eski 10 Aralık 2009, 15:00

Merkezi eğilim ve yayılma ölçüleri nelerdir?

#10 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Alıntı:
merkezi egilim ve yayilim olculeri

merkezi eğilim yayılım ölçüleri nelerdir
Rapor Et
Cevap Yaz Yeni Konu Aç
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.292 saniyede (82.93% PHP - 17.07% MySQL) 17 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +3 - Saat: 18:03
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi