Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Sohbet (Flash Chat) Forumda Ara

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

Bu konu Soru-Cevap forumunda mylasa_tr_95 tarafından 19 Mart 2009 (16:23) tarihinde açılmıştır.FacebookFacebook'ta Paylaş
22323 kez görüntülenmiş, 15 cevap yazılmış ve son mesaj 19 Nisan 2014 (22:24) tarihinde gönderilmiştir.
  • 5 üzerinden 2.33  |  Oy Veren: 3      
Cevap Yaz Yeni Konu Aç
Bu konuyu arkadaşlarınızla paylaşın:    « Önceki Konu | Sonraki Konu »      Yazdırılabilir Sürümü GösterYazdırılabilir Sürümü Göster    AramaBu Konuda Ara  
Eski 19 Mart 2009, 16:23

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

#1 (link)
mylasa_tr_95
Ziyaretçi
mylasa_tr_95 - avatarı
Yoketme ve yerine koyma metodu hakkında bir çalışma kağıdı istiyorum yarın sınavımız var lütfen
En iyi cevap Keten Prenses tarafından gönderildi

birinci dereceden iki bilinmeyenli denklem sistemini çözmek için aşağıdaki yöntemler kullanılır.
• Yok etme metodu
• Yerine koyma metodu

1) Yok etme metodu: Bilinmeyenlerden birinin katsayıları her iki denklemde eşitlenerek, denklemler taraf tarafa toplanır veya çıkarılır. Bulunan bir bilinmeyenli denklem çözülerek bulunan değer, ilk denklemlerden birinde yerine konarak diğer bilinmeyen bulunur. Örnek :

2) Yerine koyma metodu: Verilen iki denklemden birinde, bilinmeyenlerden biri diğeri cinsinden bulunur ve diğer denklemde yerine konur. Bulunan bir bilinmeyenli denklem çözülür ve bulunan değer denklemlerden birinde yerine konarak diğer bilinmeyen de bulunur.

İKİNCİ DERECEDEN DENKLEMLERİKİNCİ DERECE DENKLEMİ Babilliler, Mısırlılar ve Çinlilerde x + y = a ve x - y = b denklem çiftinde, yanlışı ılı memeyle x = (a + b)/2 ve y = (a-b)/2 olduğunu biliyorlardı. Çinliler ayrıca matris bloklarını ve bambu çubukları kullanarak bu denklem sistemini çözebiliyorlardı. Daha sonraki gelen halklarda bu geometrik şekilleri kullanarak bu denklem sistemine sayısal çözümler bulmuşlardır. Eski halklarda sistemli bir ispat yöntemi bulunmadığından hu tür işlemler daha çok deneme biçiminde yürütülüyordu. Çinlilerde de sistemli bir ispat yöntemi yoktu. Bunları söylerken, eski Babil, Mısır ve Çin anlatılıyor. Çinlilerin ikinci derece denklemine dönüşen problemleri Dokuz Bölüm isimli kitapta iki tane denklemle verilir. Bu denklemler arasında bilinmeyenin birisi yok edilerek sonuçta ikinci derece denklemi bulunur. Sonra denklem kendi yöntemleriyle çözülür. Çinlilerin Dokuz Bölüm isimli kitabındaki 11. problem şöyledir. Bir kapının boyu eninden 6.8 birim daha fazladır. Kapının köşegeninin uzunluğu da 10 birimdir. Kapının enini ve boyunu hesaplayınız. Problemin ifadesine göre boyutlar x ve y ise x-y = 6.8 ve x2 + y2=100 denklem çifti yazılır. Çinliler bu problemi daha çok Pisagor yöntemiyle çözerler. Eğer bu problemi biz x - y = d ve x2 + y2 = c2 biçiminde yazarsak, (x + y)2 = 4xy + (x - y)2 ve c2 = 2xy+(x - y)2 yada 4xy = 2c2 - 2(x - y)2 yazılır. Buradan (x + y)2 = 2c2-(x - y)2 ya da x+y= yazılır. Eşitliğin her iki yanı 2 sayısıyla bölünürse, olur. Buradan x +y = 12.4 gelir. x-y = 6.8 olarak verilmişti. Buradan x = 9.6 ve y = 2.8 olarak bulunur. Çinlilerin Dokuz Bölüm isimli kitaplardaki problemler daha çok doğrusal ve ikinci derece olan denklem sistemleri biçimlerine dönüşür. Bu tür örnekler Çinlilerde fazladır. Oysa Eski Babillilerdeki tabletler x + y = b ve xy = c biçimlere dönüşen problemlerle doludur. Babillilerin problemleri daha çok alan ve çevre türünde düzenlenmiştir. Alanı c ve çevresi 2b olan çok sayıda Babil tableti bulunmuştur. Bu tabletler x = b/2 + z ve y = b/2 - z boyutlu dikdörtgen ve c alanı t. . (b/2 + z) (b/2 - z) = (b/2)2 - z2 biçiminde alınarak hesaplar yapılmıştır. Bu hesaplamalara göre olur. Buradan ve y = değerleri istenilen denklem sisteminin çözümüdür. Burada yazdığımız modern gösterimler, Babillilerin tabletlerinde yapılan çözümlerin yorumlanması ve açıklanması türendedir. Babilliler aslında formül vermemişlerdir. Her problemi çözerken çözümde kullandıkları yöntemler bunlardır. Babilli yazıcılar bu işlemi geometrik olarak nasıl yapmışlar ve nasıl tabletlere geçirmişlerdir? Şimdi onu gösterelim. Yine x + y = b ve xy = c olarak verilsin. Burada x değerine uzun kenar ve y değerine de kısa kenar diyorlar. Daha kısa deyimle x uzunluk ve y de genişlik olarak alınıyor. Buna göre problemin ifadesinden genel olarak x + y = b ve xy = c gösterimleri geliyor. Modern dille bu iki denklem sisteminden uzunluk denen x ve genişlik denen y değeri hesaplanacak. Bu hesaplamaları geometrik olarak şu şekle dayandırıyorlar. Yani komutlarından böyle yaptıkları anlaşılıyor. Önce b sayısını ikiye bölüyor ve b/2 kenarlı kareyi çiziyor. Burada b/2 = x - (x - y)/2 = y + (x - y)/2 biçiminde ve b/2 = (x + y)/2 olduğundan, b/2 kenarlı karenin üa-nı xy = c alanından (x - y)/2 kenarlı karenin alanı kadar daha fazladır. Yani, x+y=b ve xy=c olan denklem sisteminin çözümünün geometrik yorumu olur. Yukarıdaki şekle göre b/2 sayısına sayısını bir kez ekler ve bir kez de çıkarırsak sırasıyla
SORU-1 :

SORULAR
1)2x 2 - 8x + 6 = 0 denklemini çözünüz.

CEVAP-1 :
∆ = 8 2 - 4 . 2 . 6 = 16 ve 16 >0 olup farklı iki çözüm vardır. x 1 = ( - (-8) + √ 16 ) / 2 . 2 = ( 8 + 4 ) / 4 = 3 ve x 2 = ( - (-8) - √ 16 ) / 2 . 2 = ( 8 - 4 ) / 4 = 1 olur. Ç = { 1 , 3 }

SORU-2 :
2) x 2 + 4x -2 = 0 denkleminin kökleri x 1 ve x 2 dir. Kökleri x 1 + 3 ve x 2 + 3 olan denklemi bulunuz.

CEVAP-2 :
Denklemin kökler toplamı -4 / 1 = -4 ve kökler çarpımı (-2) / 1 = -2 dir. Kurmak istediğimiz denklemin kökler toplamı T = x 1 + 3 + x 2 + 3 = -4 + 6 = 2 dir. Kökler çarpımı ise Ç = ( x 1 + 3 ) . ( x 2 + 3 ) = x 1 . x 2 + 3 . ( x 1 + x 2 ) + 9 = -2 + 3 . (-4) + 9 = -5 olur. Denklem x 2 - Tx + Ç = 0 şeklindedir. x 2 - 2x - 5 = 0 aradığımız denklemdir.

SORU-3 :
3) x 2 + xy =12 denklem sistemini çözünüz.
xy + y 2 = 4

CEVAP-3 :
Birinci ve ikinci denklem taraf tarafa toplanırsa x 2 + 2xy + y 2 = 16 ve taraf tarafa çıkarılırsa x 2 - y 2 = 8 denklemleri elde edilir. ( x + y ) 2 = 16 ise x + y = 4 veya x + y = - 4 olacaktır.
x 2 - y 2 = 8 ifadesi x + y = 4 ve x + y = - 4 ifadeleriyle taraf tarafa ayrı ayrı bölünürse x - y = 2 ve x - y = -2 elde edilir.
x + y = 4 ve x + y = - 4 denklem sistemleri ayrı ayrı çözülürse x = 3 , y = 1 ve
x - y = 2 x - y = -2 x = -3 , y = -1 olur.
Ç = { (3 , 1) , (-3 , -1) }
Rapor Et
Reklam
Eski 19 Mart 2009, 16:27

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

#2 (link)
MsXLabs Üyesi
Keten Prenses - avatarı
birinci dereceden iki bilinmeyenli denklem sistemini çözmek için aşağıdaki yöntemler kullanılır.
• Yok etme metodu
• Yerine koyma metodu

1) Yok etme metodu: Bilinmeyenlerden birinin katsayıları her iki denklemde eşitlenerek, denklemler taraf tarafa toplanır veya çıkarılır. Bulunan bir bilinmeyenli denklem çözülerek bulunan değer, ilk denklemlerden birinde yerine konarak diğer bilinmeyen bulunur. Örnek :

2) Yerine koyma metodu: Verilen iki denklemden birinde, bilinmeyenlerden biri diğeri cinsinden bulunur ve diğer denklemde yerine konur. Bulunan bir bilinmeyenli denklem çözülür ve bulunan değer denklemlerden birinde yerine konarak diğer bilinmeyen de bulunur.

İKİNCİ DERECEDEN DENKLEMLERİKİNCİ DERECE DENKLEMİ Babilliler, Mısırlılar ve Çinlilerde x + y = a ve x - y = b denklem çiftinde, yanlışı ılı memeyle x = (a + b)/2 ve y = (a-b)/2 olduğunu biliyorlardı. Çinliler ayrıca matris bloklarını ve bambu çubukları kullanarak bu denklem sistemini çözebiliyorlardı. Daha sonraki gelen halklarda bu geometrik şekilleri kullanarak bu denklem sistemine sayısal çözümler bulmuşlardır. Eski halklarda sistemli bir ispat yöntemi bulunmadığından hu tür işlemler daha çok deneme biçiminde yürütülüyordu. Çinlilerde de sistemli bir ispat yöntemi yoktu. Bunları söylerken, eski Babil, Mısır ve Çin anlatılıyor. Çinlilerin ikinci derece denklemine dönüşen problemleri Dokuz Bölüm isimli kitapta iki tane denklemle verilir. Bu denklemler arasında bilinmeyenin birisi yok edilerek sonuçta ikinci derece denklemi bulunur. Sonra denklem kendi yöntemleriyle çözülür. Çinlilerin Dokuz Bölüm isimli kitabındaki 11. problem şöyledir. Bir kapının boyu eninden 6.8 birim daha fazladır. Kapının köşegeninin uzunluğu da 10 birimdir. Kapının enini ve boyunu hesaplayınız. Problemin ifadesine göre boyutlar x ve y ise x-y = 6.8 ve x2 + y2=100 denklem çifti yazılır. Çinliler bu problemi daha çok Pisagor yöntemiyle çözerler. Eğer bu problemi biz x - y = d ve x2 + y2 = c2 biçiminde yazarsak, (x + y)2 = 4xy + (x - y)2 ve c2 = 2xy+(x - y)2 yada 4xy = 2c2 - 2(x - y)2 yazılır. Buradan (x + y)2 = 2c2-(x - y)2 ya da x+y= yazılır. Eşitliğin her iki yanı 2 sayısıyla bölünürse, olur. Buradan x +y = 12.4 gelir. x-y = 6.8 olarak verilmişti. Buradan x = 9.6 ve y = 2.8 olarak bulunur. Çinlilerin Dokuz Bölüm isimli kitaplardaki problemler daha çok doğrusal ve ikinci derece olan denklem sistemleri biçimlerine dönüşür. Bu tür örnekler Çinlilerde fazladır. Oysa Eski Babillilerdeki tabletler x + y = b ve xy = c biçimlere dönüşen problemlerle doludur. Babillilerin problemleri daha çok alan ve çevre türünde düzenlenmiştir. Alanı c ve çevresi 2b olan çok sayıda Babil tableti bulunmuştur. Bu tabletler x = b/2 + z ve y = b/2 - z boyutlu dikdörtgen ve c alanı t. . (b/2 + z) (b/2 - z) = (b/2)2 - z2 biçiminde alınarak hesaplar yapılmıştır. Bu hesaplamalara göre olur. Buradan ve y = değerleri istenilen denklem sisteminin çözümüdür. Burada yazdığımız modern gösterimler, Babillilerin tabletlerinde yapılan çözümlerin yorumlanması ve açıklanması türendedir. Babilliler aslında formül vermemişlerdir. Her problemi çözerken çözümde kullandıkları yöntemler bunlardır. Babilli yazıcılar bu işlemi geometrik olarak nasıl yapmışlar ve nasıl tabletlere geçirmişlerdir? Şimdi onu gösterelim. Yine x + y = b ve xy = c olarak verilsin. Burada x değerine uzun kenar ve y değerine de kısa kenar diyorlar. Daha kısa deyimle x uzunluk ve y de genişlik olarak alınıyor. Buna göre problemin ifadesinden genel olarak x + y = b ve xy = c gösterimleri geliyor. Modern dille bu iki denklem sisteminden uzunluk denen x ve genişlik denen y değeri hesaplanacak. Bu hesaplamaları geometrik olarak şu şekle dayandırıyorlar. Yani komutlarından böyle yaptıkları anlaşılıyor. Önce b sayısını ikiye bölüyor ve b/2 kenarlı kareyi çiziyor. Burada b/2 = x - (x - y)/2 = y + (x - y)/2 biçiminde ve b/2 = (x + y)/2 olduğundan, b/2 kenarlı karenin üa-nı xy = c alanından (x - y)/2 kenarlı karenin alanı kadar daha fazladır. Yani, x+y=b ve xy=c olan denklem sisteminin çözümünün geometrik yorumu olur. Yukarıdaki şekle göre b/2 sayısına sayısını bir kez ekler ve bir kez de çıkarırsak sırasıyla
SORU-1 :

SORULAR
1)2x 2 - 8x + 6 = 0 denklemini çözünüz.

CEVAP-1 :
∆ = 8 2 - 4 . 2 . 6 = 16 ve 16 >0 olup farklı iki çözüm vardır. x 1 = ( - (-8) + √ 16 ) / 2 . 2 = ( 8 + 4 ) / 4 = 3 ve x 2 = ( - (-8) - √ 16 ) / 2 . 2 = ( 8 - 4 ) / 4 = 1 olur. Ç = { 1 , 3 }

SORU-2 :
2) x 2 + 4x -2 = 0 denkleminin kökleri x 1 ve x 2 dir. Kökleri x 1 + 3 ve x 2 + 3 olan denklemi bulunuz.

CEVAP-2 :
Denklemin kökler toplamı -4 / 1 = -4 ve kökler çarpımı (-2) / 1 = -2 dir. Kurmak istediğimiz denklemin kökler toplamı T = x 1 + 3 + x 2 + 3 = -4 + 6 = 2 dir. Kökler çarpımı ise Ç = ( x 1 + 3 ) . ( x 2 + 3 ) = x 1 . x 2 + 3 . ( x 1 + x 2 ) + 9 = -2 + 3 . (-4) + 9 = -5 olur. Denklem x 2 - Tx + Ç = 0 şeklindedir. x 2 - 2x - 5 = 0 aradığımız denklemdir.

SORU-3 :
3) x 2 + xy =12 denklem sistemini çözünüz.
xy + y 2 = 4

CEVAP-3 :
Birinci ve ikinci denklem taraf tarafa toplanırsa x 2 + 2xy + y 2 = 16 ve taraf tarafa çıkarılırsa x 2 - y 2 = 8 denklemleri elde edilir. ( x + y ) 2 = 16 ise x + y = 4 veya x + y = - 4 olacaktır.
x 2 - y 2 = 8 ifadesi x + y = 4 ve x + y = - 4 ifadeleriyle taraf tarafa ayrı ayrı bölünürse x - y = 2 ve x - y = -2 elde edilir.
x + y = 4 ve x + y = - 4 denklem sistemleri ayrı ayrı çözülürse x = 3 , y = 1 ve
x - y = 2 x - y = -2 x = -3 , y = -1 olur.
Ç = { (3 , 1) , (-3 , -1) }
Rapor Et
Eski 17 Mart 2010, 20:44

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

#3 (link)
Misafir
Ziyaretçi
Misafir - avatarı
yok etme metodu ile ilgili daha çok soru ve cvp istiyorum
Rapor Et
Eski 17 Mart 2010, 20:56

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

#4 (link)
LeqoLas
Ziyaretçi
LeqoLas - avatarı
Yok Etme Metodu:

-2/2x-4y=15
4x+3y=50
+_____________

-4y-8y=-30
+4x-3y=50
+_____________

4x'ler gider geriye 11y=20 kalır buda y=11/20 olur.
Rapor Et
Eski 18 Mart 2010, 13:23

konu anlatımı

#5 (link)
Misafir
Ziyaretçi
Misafir - avatarı
okulda hoca anlattı ama anlamadım. normailde çok başarılıyımdır. LÜTFEN YAZARMISINIZ!!!1
Rapor Et
Eski 30 Mart 2010, 13:40

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

#6 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Alıntı:
yerine koyma metodu ornekler
usgmk yerine koyma metodu örnekler
Rapor Et
Eski 12 Ocak 2011, 16:57

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

#7 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Eyw. da çok az örnek war benim ödev war yapmam lasim ya
Rapor Et
Eski 20 Şubat 2011, 10:55

yok etme metodu

#8 (link)
Misafir
Ziyaretçi
Misafir - avatarı
yok etme metodu ile ilgili sorular ile ilgili daha fazla bilgi istiyorum
Rapor Et
Eski 10 Mart 2011, 18:41

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

#9 (link)
Misafir
Ziyaretçi
Misafir - avatarı
benim tek sorunvar oda yerine koyma biraz daha tekrar
Rapor Et
Eski 6 Aralık 2011, 19:46

Yoketme ve yerine koyma metodu hakkında bilgi verir misiniz?

#10 (link)
Misafir
Ziyaretçi
Misafir - avatarı
ya biraz daha bilgi lütfennn
Rapor Et
Cevap Yaz Yeni Konu Aç
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.237 saniyede (76.87% PHP - 23.13% MySQL) 17 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +2 - Saat: 16:27
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi