Cevap Yaz Önceki Konu Sonraki Konu

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

Gösterim: 20213 | Cevap: 12
  • bas katsayi nasil bulunur
  • polinomda bas katsayi bulma
  • polinomlarda deger bulma
Misafir
Cevaplanmış   |    9 Ekim 2009 09:19   |   Mesaj #1   |   
Avatarı yok
Ziyaretçi

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nerden çıktı nasıl oluştu
En iyi cevap LaDyGaGa tarafından gönderildi

A. POLİNOMLAR
olmak üzere,
(çok terimli) denir.
Burada, a0, a1, a2, ... an reel sayılarına polinomun kat sayıları,
×[/b] xn terimindeki an sayısına terimin kat sayısı, x in kuvveti olan
n sayısına terimin derecesi denir.
Derecesi en büyük olan terimin derecesine polinomun derecesi denir ve der[P(x)] ile gösterilir. Derecesi en büyük olan terimin kat sayısına ise polinomun baş kat sayısı denir.
Polinomlar kat sayılarına göre adlandırılırlar. Kat sayıları reel sayı olan polinomlara reel kat sayılı polinom, kat sayıları rasyonel sayı olan polinomlara rasyonel kat sayılı polinom, kat sayıları tam sayı olan polinomlara tam kat sayılı polinom denir.

Tanım
Sabit polinomun derecesi 0 (sıfır) dır.
Tanım
Sıfır polinomunun derecesi tanımsızdır.
Polinomların Eşitliği
Aynı dereceli terimlerinin kat sayıları eşit olan polinomlar eşittir.

B. POLİNOMLARDA İŞLEMLER
1. Toplama İşlemi
İki polinom toplanırken; dereceleri aynı olan terimlerin kat sayıları kendi aralarında toplanır, sonuç o terimin kat sayısı olarak yazılır.

2. Çıkarma İşlemi
P(x) – Q(x) = P(x) + [–Q(x)]
olduğu için, P(x) polinomundan Q(x) polinomunu çıkarmak, P(x) ile

–Q(x) i toplamaktır. Bunun için çıkarma işlemini, çıkarılacak polinomun işaretini değiştirip toplama yapmak biçiminde ele alabiliriz.

3. Çarpma İşlemi
İki polinomun çarpımı; polinomlardan birinin her teriminin diğer polinomun her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimler toplamınarak yapılır.

4. Bölme İşleminin Yapılışı
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer şekilde yapılır. Bunun için sırasıyla aşağıdaki işlemler yapılır:
1) Bölünen ve bölen polinomlar x değişkeninin azalan kuvvetlerine göre sıralanır.
2) Bölünen polinomun soldan ilk terimi, bölen polinomun soldan ilk terimine bölünür. Çıkan sonuç, bölümün ilk terimi olarak yazılır.
3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek şekilde bölünen polinomun altına yazılır.
4) Bölünenin altına yazılan çarpım polinomu, bölünen polinomdan çıkarılır.
5) Yukarıdaki işlemlere, kalan polinomun derecesi, bölen polinomun derecesinden küçük oluncaya kadar devam edilir.

Tanım
m > n olmak üzere,

der[P(x)] = m ve der[Q(x)] = n olsun.

P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) olsun.

Buna göre,
der[P(x) + Q(x)] = m,
der[P(x) – Q(x)] = m,
der[P(x) × Q(x)] = m + n,
der[B(x)] = m – n,
der[[P(x)]k] = k × der[P(x)] = k × m,
der[[P(xk)]] = k × der[P(x)] = k × m dir.

C. P(x) İN x = k İÇİN DEĞERİ
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunun x = k için değeri,
P(k) = a0 + a1 × k + a2 × k2 + … +an × kn dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 1 yazılırsa,
P(1) = a0 + a1 + a2 + ... + an olur.
Bu durumda P(1) in değeri P(x) polinomunun kat sayıları toplamıdır.

Sonuç
Herhangi bir polinomda x yerine 1 yazılırsa, o polinomun kat sayıları toplamı bulunur.
Örneğin, P(x + 7) polinomunun kat sayıları toplamı,
P(1 + 7) = P dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 0 yazılırsa,
P(0) = a0 olur.
Bu durumda P(0) ın değeri P(x) polinomunun sabit terimidir.

Sonuç
Herhangi bir polinomda x yerine 0 yazılırsa, o polinomun sabit (x ten bağımsız) terimi bulunur.
Örneğin, P(2x + 3) polinomunun sabit terimi,
P(0 + 3) = P(3) tür.


D. P(x) İN (ax + b) İLE BÖLÜNMESİYLE ELDE EDİLEN KALAN
P(x) in ax + b ile bölünmesiyle elde edilen bölüm B(x), kalan K olsun. Buna göre,


Yani; P(x) polinomunun ax + b ile bölünmesiyle elde edilen kalanı bulmak için, ax + b = 0 denkleminin kökü olan hesaplanır.

Sonuç
P(x) polinomunun x – a ile bölümünden kalan P(a) dır.
P(x + b) polinomunun x – a ile bölümünden kalan

P(a + b) dir.
P(3x + b) polinomunun x – a ile bölümünden kalan

P(3 × a + b) dir.

E. P(x) İN xn + a İLE BÖLÜMÜNDEN KALAN
Kural
Derecesi n den büyük olan bir polinomun
xn + a ile bölümünden kalanı bulmak için, xn yerine –a yazılır.
(xn + a = 0 ise, xn = –a)


F. P(x) İN (x – a) × (x – b) ÇARPIMI İLE BÖLÜNMESİ
Kural
1) P(x) polinomu (x – a) × (x – b) çarpımı ile tam olarak bölünebiliyorsa x – a ve x – b çarpanları ile de ayrı ayrı tam olarak bölünür.
2) x – a ve x – b aralarında asal polinomlar olmak üzere;

P(x), bu polinomlara ayrı ayrı tam olarak bölünebiliyorsa, (x – a) × (x – b) çarpımı ile de tam olarak bölünür.


G. P(x) İN (a × x + b)2 İLE BÖLÜNEBİLMESİ
P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
P(x) polinomu ve P'(x) polinomu ax + b ye tam olarak bölünür.

(P'(x), P(x) in türevidir.)
Buna göre, P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
<div>
__________________

9 Ekim 2009 12:20   |   Mesaj #2   |   
The Unique - avatarı
MsXLabs Üyesi
Kahraman Maraş

43235
4.169 mesaj
Kayıt Tarihi:Üyelik: 12-11-2005
A. POLİNOMLAR
olmak üzere,
P(x) = a0 + a1 × x + a2 × x2 + ... + an × xn
biçimindeki ifadelere x değişkenine göre, düzenlenmiş reel kat sayılı polinom (çok terimli) denir.
Burada, a0, a1, a2, ... an reel sayılarına polinomun kat sayıları,
a0, a1 × x , a2 × x2 , ... , an × xn ifadelerine polinomun terimleri denir.
an × xn terimindeki an sayısına terimin kat sayısı, x in kuvveti olan
n sayısına terimin derecesi denir.
Derecesi en büyük olan terimin derecesine polinomun derecesi denir ve der[P(x)] ile gösterilir. Derecesi en büyük olan terimin kat sayısına ise polinomun baş kat sayısı denir.
Polinomlar kat sayılarına göre adlandırılırlar. Kat sayıları reel sayı olan polinomlara reel kat sayılı polinom, kat sayıları rasyonel sayı olan polinomlara rasyonel kat sayılı polinom, kat sayıları tam sayı olan polinomlara tam kat sayılı polinom denir.

Tanım
olmak üzere, P(x) = c biçimindeki polinomlara, sabit polinom denir. Sabit polinomun derecesi 0 (sıfır) dır.

Tanım
P(x) = 0 biçimindeki polinoma, sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.

Polinomların Eşitliği
Aynı dereceli terimlerinin kat sayıları eşit olan polinomlar eşittir.

B. POLİNOMLARDA İŞLEMLER
1. Toplama İşlemi
İki polinom toplanırken; dereceleri aynı olan terimlerin kat sayıları kendi aralarında toplanır, sonuç o terimin kat sayısı olarak yazılır.

2. Çıkarma İşlemi
P(x) – Q(x) = P(x) + [–Q(x)]
olduğu için, P(x) polinomundan Q(x) polinomunu çıkarmak, P(x) ile
–Q(x) i toplamaktır. Bunun için çıkarma işlemini, çıkarılacak polinomun işaretini değiştirip toplama yapmak biçiminde ele alabiliriz.


3. Çarpma İşlemi
İki polinomun çarpımı; polinomlardan birinin her teriminin diğer polinomun her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimler toplamınarak yapılır.

4. Bölme İşleminin Yapılışı
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer şekilde yapılır. Bunun için sırasıyla aşağıdaki işlemler yapılır:
1) Bölünen ve bölen polinomlar x değişkeninin azalan kuvvetlerine göre sıralanır.
2) Bölünen polinomun soldan ilk terimi, bölen polinomun soldan ilk terimine bölünür. Çıkan sonuç, bölümün ilk terimi olarak yazılır.
3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek şekilde bölünen polinomun altına yazılır.
4) Bölünenin altına yazılan çarpım polinomu, bölünen polinomdan çıkarılır.
5) Yukarıdaki işlemlere, kalan polinomun derecesi, bölen polinomun derecesinden küçük oluncaya kadar devam edilir.

Tanım
m > n olmak üzere,
der[P(x)] = m ve der[Q(x)] = n olsun.
P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) olsun.
Buna göre,
der[P(x) + Q(x)] = m,
der[P(x) – Q(x)] = m,
der[P(x) × Q(x)] = m + n,
der[B(x)] = m – n,
der[[P(x)]k] = k × der[P(x)] = k × m,
der[[P(xk)]] = k × der[P(x)] = k × m dir.

C. P(x) İN x = k İÇİN DEĞERİ
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunun x = k için değeri,
P(k) = a0 + a1 × k + a2 × k2 + … +an × kn dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 1 yazılırsa,
P(1) = a0 + a1 + a2 + ... + an olur.
Bu durumda P(1) in değeri P(x) polinomunun kat sayıları toplamıdır.

Sonuç
Herhangi bir polinomda x yerine 1 yazılırsa, o polinomun kat sayıları toplamı bulunur.
Örneğin, P(x + 7) polinomunun kat sayıları toplamı,
P(1 + 7) = P dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 0 yazılırsa,
P(0) = a0 olur.
Bu durumda P(0) ın değeri P(x) polinomunun sabit terimidir.

Sonuç
Herhangi bir polinomda x yerine 0 yazılırsa, o polinomun sabit (x ten bağımsız) terimi bulunur.
Örneğin, P(2x + 3) polinomunun sabit terimi,
P(0 + 3) = P(3) tür.


D. P(x) İN (ax + b) İLE BÖLÜNMESİYLE ELDE EDİLEN KALAN
P(x) in ax + b ile bölünmesiyle elde edilen bölüm B(x), kalan K olsun. Buna göre,


Yani; P(x) polinomunun ax + b ile bölünmesiyle elde edilen kalanı bulmak için, ax + b = 0 denkleminin kökü olan için P(x) polinomunun değeri olan hesaplanır.

Sonuç
P(x) polinomunun x – a ile bölümünden kalan P(a) dır.
P(x + b) polinomunun x – a ile bölümünden kalan
P(a + b) dir.
P(3x + b) polinomunun x – a ile bölümünden kalan
P(3 × a + b) dir.

E. P(x) İN xn + a İLE BÖLÜMÜNDEN KALAN
Kural
Derecesi n den büyük olan bir polinomun
xn + a ile bölümünden kalanı bulmak için, xn yerine –a yazılır.
(xn + a = 0 ise, xn = –a)


F. P(x) İN (x – a) × (x – b) ÇARPIMI İLE BÖLÜNMESİ
Kural
1) P(x) polinomu (x – a) × (x – b) çarpımı ile tam olarak bölünebiliyorsa x – a ve x – b çarpanları ile de ayrı ayrı tam olarak bölünür.
2) x – a ve x – b aralarında asal polinomlar olmak üzere;
P(x), bu polinomlara ayrı ayrı tam olarak bölünebiliyorsa, (x – a) × (x – b) çarpımı ile de tam olarak bölünür.



G. P(x) İN (a × x + b)2 İLE BÖLÜNEBİLMESİ
P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
P(x) polinomu ve P'(x) polinomu ax + b ye tam olarak bölünür.
(P'(x), P(x) in türevidir.)

Buna göre, P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
Misafir
18 Ocak 2011 14:10   |   Mesaj #3   |   
Avatarı yok
Ziyaretçi

Polinomlarda Kalan bulma

Alıntı

polinomlarda kalan bulma ile ilgili daha fazla bilgi istiyorum

AciL Lazımmmmmm
Misafir
28 Eylül 2011 15:46   |   Mesaj #4   |   
Avatarı yok
Ziyaretçi
p(x) = (xkare + -7)kare pol.nun
a) kat sayıları toplamı ?
b) çiftdereceli kat sayıları
c) tek dereceli kat sayıları ?
lütfen çözüüün.
Misafir
1 Ekim 2011 10:21   |   Mesaj #5   |   
Avatarı yok
Ziyaretçi
polinomda çift dereceli terimin formülü neden p(1)+p(-1) bölü 2 dir açıklar mısınız lütfen?
Misafir
5 Ekim 2011 06:14   |   Mesaj #6   |   
Avatarı yok
Ziyaretçi

çift dereceli terimler katsayılar toplamı

Sabit Terim ve Katsayılar Toplamı | SayısalDershane
burada örnek var nedeni de yazıyo
Misafir
6 Ekim 2011 16:17   |   Mesaj #7   |   
Avatarı yok
Ziyaretçi

polinomlar

p(x-3)=2x kare -5x+7 =?
Misafir
2 Kasım 2011 16:14   |   Mesaj #8   |   
Avatarı yok
Ziyaretçi
p(x)polinomunda dereceleri nasıl bulacagız?
LaDyGaGa
2 Kasım 2011 16:55   |   Mesaj #9   |   
Avatarı yok
Ziyaretçi
A. POLİNOMLAR
olmak üzere,
(çok terimli) denir.
Burada, a0, a1, a2, ... an reel sayılarına polinomun kat sayıları,
×[/b] xn terimindeki an sayısına terimin kat sayısı, x in kuvveti olan
n sayısına terimin derecesi denir.
Derecesi en büyük olan terimin derecesine polinomun derecesi denir ve der[P(x)] ile gösterilir. Derecesi en büyük olan terimin kat sayısına ise polinomun baş kat sayısı denir.
Polinomlar kat sayılarına göre adlandırılırlar. Kat sayıları reel sayı olan polinomlara reel kat sayılı polinom, kat sayıları rasyonel sayı olan polinomlara rasyonel kat sayılı polinom, kat sayıları tam sayı olan polinomlara tam kat sayılı polinom denir.

Tanım
Sabit polinomun derecesi 0 (sıfır) dır.
Tanım
Sıfır polinomunun derecesi tanımsızdır.
Polinomların Eşitliği
Aynı dereceli terimlerinin kat sayıları eşit olan polinomlar eşittir.

B. POLİNOMLARDA İŞLEMLER
1. Toplama İşlemi
İki polinom toplanırken; dereceleri aynı olan terimlerin kat sayıları kendi aralarında toplanır, sonuç o terimin kat sayısı olarak yazılır.

2. Çıkarma İşlemi
P(x) – Q(x) = P(x) + [–Q(x)]
olduğu için, P(x) polinomundan Q(x) polinomunu çıkarmak, P(x) ile

–Q(x) i toplamaktır. Bunun için çıkarma işlemini, çıkarılacak polinomun işaretini değiştirip toplama yapmak biçiminde ele alabiliriz.

3. Çarpma İşlemi
İki polinomun çarpımı; polinomlardan birinin her teriminin diğer polinomun her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimler toplamınarak yapılır.

4. Bölme İşleminin Yapılışı
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer şekilde yapılır. Bunun için sırasıyla aşağıdaki işlemler yapılır:
1) Bölünen ve bölen polinomlar x değişkeninin azalan kuvvetlerine göre sıralanır.
2) Bölünen polinomun soldan ilk terimi, bölen polinomun soldan ilk terimine bölünür. Çıkan sonuç, bölümün ilk terimi olarak yazılır.
3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek şekilde bölünen polinomun altına yazılır.
4) Bölünenin altına yazılan çarpım polinomu, bölünen polinomdan çıkarılır.
5) Yukarıdaki işlemlere, kalan polinomun derecesi, bölen polinomun derecesinden küçük oluncaya kadar devam edilir.

Tanım
m > n olmak üzere,

der[P(x)] = m ve der[Q(x)] = n olsun.

P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) olsun.

Buna göre,
der[P(x) + Q(x)] = m,
der[P(x) – Q(x)] = m,
der[P(x) × Q(x)] = m + n,
der[B(x)] = m – n,
der[[P(x)]k] = k × der[P(x)] = k × m,
der[[P(xk)]] = k × der[P(x)] = k × m dir.

C. P(x) İN x = k İÇİN DEĞERİ
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunun x = k için değeri,
P(k) = a0 + a1 × k + a2 × k2 + … +an × kn dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 1 yazılırsa,
P(1) = a0 + a1 + a2 + ... + an olur.
Bu durumda P(1) in değeri P(x) polinomunun kat sayıları toplamıdır.

Sonuç
Herhangi bir polinomda x yerine 1 yazılırsa, o polinomun kat sayıları toplamı bulunur.
Örneğin, P(x + 7) polinomunun kat sayıları toplamı,
P(1 + 7) = P dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 0 yazılırsa,
P(0) = a0 olur.
Bu durumda P(0) ın değeri P(x) polinomunun sabit terimidir.

Sonuç
Herhangi bir polinomda x yerine 0 yazılırsa, o polinomun sabit (x ten bağımsız) terimi bulunur.
Örneğin, P(2x + 3) polinomunun sabit terimi,
P(0 + 3) = P(3) tür.


D. P(x) İN (ax + b) İLE BÖLÜNMESİYLE ELDE EDİLEN KALAN
P(x) in ax + b ile bölünmesiyle elde edilen bölüm B(x), kalan K olsun. Buna göre,


Yani; P(x) polinomunun ax + b ile bölünmesiyle elde edilen kalanı bulmak için, ax + b = 0 denkleminin kökü olan hesaplanır.

Sonuç
P(x) polinomunun x – a ile bölümünden kalan P(a) dır.
P(x + b) polinomunun x – a ile bölümünden kalan

P(a + b) dir.
P(3x + b) polinomunun x – a ile bölümünden kalan

P(3 × a + b) dir.

E. P(x) İN xn + a İLE BÖLÜMÜNDEN KALAN
Kural
Derecesi n den büyük olan bir polinomun
xn + a ile bölümünden kalanı bulmak için, xn yerine –a yazılır.
(xn + a = 0 ise, xn = –a)


F. P(x) İN (x – a) × (x – b) ÇARPIMI İLE BÖLÜNMESİ
Kural
1) P(x) polinomu (x – a) × (x – b) çarpımı ile tam olarak bölünebiliyorsa x – a ve x – b çarpanları ile de ayrı ayrı tam olarak bölünür.
2) x – a ve x – b aralarında asal polinomlar olmak üzere;

P(x), bu polinomlara ayrı ayrı tam olarak bölünebiliyorsa, (x – a) × (x – b) çarpımı ile de tam olarak bölünür.


G. P(x) İN (a × x + b)2 İLE BÖLÜNEBİLMESİ
P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
P(x) polinomu ve P'(x) polinomu ax + b ye tam olarak bölünür.

(P'(x), P(x) in türevidir.)
Buna göre, P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
<div>
__________________
Misafir
10 Aralık 2011 20:53   |   Mesaj #10   |   
Avatarı yok
Ziyaretçi
p(k)nın bulunması ile p[h(x)] in bulunması arasındaki fark nedir? hangisinde x'in yerine istenen yazılır hangisinde eşitlenerek yapılır ?
Cevap Yaz
Hızlı Cevap
İsim:
Mesaj:
Önceki Konu Sonraki Konu

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir? Konusuna Benzer Konular

Etiketler:
  • bas katsayi nasil bulunur
  • polinomda bas katsayi bulma
  • polinomlarda deger bulma
Cevap: 15
Son Mesaj: 23 Aralık 2012 18:09
AllDup - Çift Dosyaları Bulma Programı
Gönderen: Mira Forum: Yazılım
Cevap: 0
Son Mesaj: 16 Temmuz 2012 00:04
Sanatla ilgili verilen terimlerin anlamları nedir?
Gönderen: elif demir Forum: Soru-Cevap
Cevap: 0
Son Mesaj: 13 Şubat 2012 19:09
Kişisel gelişimle ilgili terimlerin anlamları nedir?
Gönderen: babu123 Forum: Soru-Cevap
Cevap: 11
Son Mesaj: 18 Şubat 2010 18:14
Adem Aslandoğan - Bulut Kat Kat Olmuş Ayın Önüne
Gönderen: probLem girL Forum: Türkçe Şarkı Sözleri
Cevap: 0
Son Mesaj: 28 Nisan 2009 14:45
Sayfa 0.525 saniyede 10 sorgu ile oluşturuldu