Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Forumda Ara

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

Bu konu Soru-Cevap forumunda Misafir tarafından 9 Ekim 2009 (09:19) tarihinde açılmıştır.
18922 kez görüntülenmiş, 12 cevap yazılmış ve son mesaj 9 Kasım 2012 (13:16) tarihinde gönderilmiştir.
Cevap Yaz Yeni Konu Aç
Eski 9 Ekim 2009, 09:19

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

#1 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Sponsorlu Bağlantılar Sponsorlu Bağlantılar
polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nerden çıktı nasıl oluştu
En iyi cevap LaDyGaGa tarafından gönderildi

A. POLİNOMLAR
01_Pol1 olmak üzere,
(çok terimli) denir.
Burada, a0, a1, a2, ... an reel sayılarına polinomun kat sayıları,
×[/b] xn terimindeki an sayısına terimin kat sayısı, x in kuvveti olan
n sayısına terimin derecesi denir.
Derecesi en büyük olan terimin derecesine polinomun derecesi denir ve der[P(x)] ile gösterilir. Derecesi en büyük olan terimin kat sayısına ise polinomun baş kat sayısı denir.
Polinomlar kat sayılarına göre adlandırılırlar. Kat sayıları reel sayı olan polinomlara reel kat sayılı polinom, kat sayıları rasyonel sayı olan polinomlara rasyonel kat sayılı polinom, kat sayıları tam sayı olan polinomlara tam kat sayılı polinom denir.

Tanım
Sabit polinomun derecesi 0 (sıfır) dır.
Tanım
Sıfır polinomunun derecesi tanımsızdır.
Polinomların Eşitliği
Aynı dereceli terimlerinin kat sayıları eşit olan polinomlar eşittir.

B. POLİNOMLARDA İŞLEMLER
1. Toplama İşlemi
İki polinom toplanırken; dereceleri aynı olan terimlerin kat sayıları kendi aralarında toplanır, sonuç o terimin kat sayısı olarak yazılır.

2. Çıkarma İşlemi
P(x) – Q(x) = P(x) + [–Q(x)]
olduğu için, P(x) polinomundan Q(x) polinomunu çıkarmak, P(x) ile

–Q(x) i toplamaktır. Bunun için çıkarma işlemini, çıkarılacak polinomun işaretini değiştirip toplama yapmak biçiminde ele alabiliriz.

3. Çarpma İşlemi
İki polinomun çarpımı; polinomlardan birinin her teriminin diğer polinomun her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimler toplamınarak yapılır.

4. Bölme İşleminin Yapılışı
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer şekilde yapılır. Bunun için sırasıyla aşağıdaki işlemler yapılır:
1) Bölünen ve bölen polinomlar x değişkeninin azalan kuvvetlerine göre sıralanır.
2) Bölünen polinomun soldan ilk terimi, bölen polinomun soldan ilk terimine bölünür. Çıkan sonuç, bölümün ilk terimi olarak yazılır.
3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek şekilde bölünen polinomun altına yazılır.
4) Bölünenin altına yazılan çarpım polinomu, bölünen polinomdan çıkarılır.
5) Yukarıdaki işlemlere, kalan polinomun derecesi, bölen polinomun derecesinden küçük oluncaya kadar devam edilir.

Tanım
m > n olmak üzere,

der[P(x)] = m ve der[Q(x)] = n olsun.

P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) olsun.

Buna göre,
01_Pol3 der[P(x) + Q(x)] = m,
01_Pol3 der[P(x) – Q(x)] = m,
01_Pol3 der[P(x) × Q(x)] = m + n,
01_Pol3 der[B(x)] = m – n,
01_Pol3 der[[P(x)]k] = k × der[P(x)] = k × m,
01_Pol3 der[[P(xk)]] = k × der[P(x)] = k × m dir.

C. P(x) İN x = k İÇİN DEĞERİ
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunun x = k için değeri,
P(k) = a0 + a1 × k + a2 × k2 + … +an × kn dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 1 yazılırsa,
P(1) = a0 + a1 + a2 + ... + an olur.
Bu durumda P(1) in değeri P(x) polinomunun kat sayıları toplamıdır.

Sonuç
Herhangi bir polinomda x yerine 1 yazılırsa, o polinomun kat sayıları toplamı bulunur.
Örneğin, P(x + 7) polinomunun kat sayıları toplamı,
P(1 + 7) = Pmsn_note dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 0 yazılırsa,
P(0) = a0 olur.
Bu durumda P(0) ın değeri P(x) polinomunun sabit terimidir.

Sonuç
Herhangi bir polinomda x yerine 0 yazılırsa, o polinomun sabit (x ten bağımsız) terimi bulunur.
Örneğin, P(2x + 3) polinomunun sabit terimi,
P(0 + 3) = P(3) tür.


D. P(x) İN (ax + b) İLE BÖLÜNMESİYLE ELDE EDİLEN KALAN
P(x) in ax + b ile bölünmesiyle elde edilen bölüm B(x), kalan K olsun. Buna göre,
01_Pol4

Yani; P(x) polinomunun ax + b ile bölünmesiyle elde edilen kalanı bulmak için, ax + b = 0 denkleminin kökü olan 01_Pol5 hesaplanır.

Sonuç
01_Pol3 P(x) polinomunun x – a ile bölümünden kalan P(a) dır.
01_Pol3 P(x + b) polinomunun x – a ile bölümünden kalan

P(a + b) dir.
01_Pol3 P(3x + b) polinomunun x – a ile bölümünden kalan

P(3 × a + b) dir.

E. P(x) İN xn + a İLE BÖLÜMÜNDEN KALAN
Kural
Derecesi n den büyük olan bir polinomun
xn + a ile bölümünden kalanı bulmak için, xn yerine –a yazılır.
(xn + a = 0 ise, xn = –a)


F. P(x) İN (x – a) × (x – b) ÇARPIMI İLE BÖLÜNMESİ
Kural
1) P(x) polinomu (x – a) × (x – b) çarpımı ile tam olarak bölünebiliyorsa x – a ve x – b çarpanları ile de ayrı ayrı tam olarak bölünür.
2) x – a ve x – b aralarında asal polinomlar olmak üzere;

P(x), bu polinomlara ayrı ayrı tam olarak bölünebiliyorsa, (x – a) × (x – b) çarpımı ile de tam olarak bölünür.


G. P(x) İN (a × x + b)2 İLE BÖLÜNEBİLMESİ
P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
P(x) polinomu ve P'(x) polinomu ax + b ye tam olarak bölünür.

(P'(x), P(x) in türevidir.)
Buna göre, P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
01_Pol7 <div>
__________________
Sponsorlu Bağlantılar
Rapor Et
Eski 9 Ekim 2009, 12:20

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

#2 (link)
MsXLabs Üyesi
The Unique - avatarı
A. POLİNOMLAR
01_Pol1 olmak üzere,
P(x) = a0 + a1 × x + a2 × x2 + ... + an × xn
biçimindeki ifadelere x değişkenine göre, düzenlenmiş reel kat sayılı polinom (çok terimli) denir.
Burada, a0, a1, a2, ... an reel sayılarına polinomun kat sayıları,
a0, a1 × x , a2 × x2 , ... , an × xn ifadelerine polinomun terimleri denir.
an × xn terimindeki an sayısına terimin kat sayısı, x in kuvveti olan
n sayısına terimin derecesi denir.
Derecesi en büyük olan terimin derecesine polinomun derecesi denir ve der[P(x)] ile gösterilir. Derecesi en büyük olan terimin kat sayısına ise polinomun baş kat sayısı denir.
Polinomlar kat sayılarına göre adlandırılırlar. Kat sayıları reel sayı olan polinomlara reel kat sayılı polinom, kat sayıları rasyonel sayı olan polinomlara rasyonel kat sayılı polinom, kat sayıları tam sayı olan polinomlara tam kat sayılı polinom denir.

Tanım
01_Pol2 olmak üzere, P(x) = c biçimindeki polinomlara, sabit polinom denir. Sabit polinomun derecesi 0 (sıfır) dır.

Tanım
P(x) = 0 biçimindeki polinoma, sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.

Polinomların Eşitliği
Aynı dereceli terimlerinin kat sayıları eşit olan polinomlar eşittir.

B. POLİNOMLARDA İŞLEMLER
1. Toplama İşlemi
İki polinom toplanırken; dereceleri aynı olan terimlerin kat sayıları kendi aralarında toplanır, sonuç o terimin kat sayısı olarak yazılır.

2. Çıkarma İşlemi
P(x) – Q(x) = P(x) + [–Q(x)]
olduğu için, P(x) polinomundan Q(x) polinomunu çıkarmak, P(x) ile
–Q(x) i toplamaktır. Bunun için çıkarma işlemini, çıkarılacak polinomun işaretini değiştirip toplama yapmak biçiminde ele alabiliriz.


3. Çarpma İşlemi
İki polinomun çarpımı; polinomlardan birinin her teriminin diğer polinomun her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimler toplamınarak yapılır.

4. Bölme İşleminin Yapılışı
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer şekilde yapılır. Bunun için sırasıyla aşağıdaki işlemler yapılır:
1) Bölünen ve bölen polinomlar x değişkeninin azalan kuvvetlerine göre sıralanır.
2) Bölünen polinomun soldan ilk terimi, bölen polinomun soldan ilk terimine bölünür. Çıkan sonuç, bölümün ilk terimi olarak yazılır.
3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek şekilde bölünen polinomun altına yazılır.
4) Bölünenin altına yazılan çarpım polinomu, bölünen polinomdan çıkarılır.
5) Yukarıdaki işlemlere, kalan polinomun derecesi, bölen polinomun derecesinden küçük oluncaya kadar devam edilir.

Tanım
m > n olmak üzere,
der[P(x)] = m ve der[Q(x)] = n olsun.
P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) olsun.
Buna göre,
01_Pol3 der[P(x) + Q(x)] = m,
01_Pol3 der[P(x) – Q(x)] = m,
01_Pol3 der[P(x) × Q(x)] = m + n,
01_Pol3 der[B(x)] = m – n,
01_Pol3 der[[P(x)]k] = k × der[P(x)] = k × m,
01_Pol3 der[[P(xk)]] = k × der[P(x)] = k × m dir.

C. P(x) İN x = k İÇİN DEĞERİ
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunun x = k için değeri,
P(k) = a0 + a1 × k + a2 × k2 + … +an × kn dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 1 yazılırsa,
P(1) = a0 + a1 + a2 + ... + an olur.
Bu durumda P(1) in değeri P(x) polinomunun kat sayıları toplamıdır.

Sonuç
Herhangi bir polinomda x yerine 1 yazılırsa, o polinomun kat sayıları toplamı bulunur.
Örneğin, P(x + 7) polinomunun kat sayıları toplamı,
P(1 + 7) = P dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 0 yazılırsa,
P(0) = a0 olur.
Bu durumda P(0) ın değeri P(x) polinomunun sabit terimidir.

Sonuç
Herhangi bir polinomda x yerine 0 yazılırsa, o polinomun sabit (x ten bağımsız) terimi bulunur.
Örneğin, P(2x + 3) polinomunun sabit terimi,
P(0 + 3) = P(3) tür.


D. P(x) İN (ax + b) İLE BÖLÜNMESİYLE ELDE EDİLEN KALAN
P(x) in ax + b ile bölünmesiyle elde edilen bölüm B(x), kalan K olsun. Buna göre,
01_Pol4

Yani; P(x) polinomunun ax + b ile bölünmesiyle elde edilen kalanı bulmak için, ax + b = 0 denkleminin kökü olan 01_Pol5 için P(x) polinomunun değeri olan 01_Pol6 hesaplanır.

Sonuç
01_Pol3 P(x) polinomunun x – a ile bölümünden kalan P(a) dır.
01_Pol3 P(x + b) polinomunun x – a ile bölümünden kalan
P(a + b) dir.
01_Pol3 P(3x + b) polinomunun x – a ile bölümünden kalan
P(3 × a + b) dir.

E. P(x) İN xn + a İLE BÖLÜMÜNDEN KALAN
Kural
Derecesi n den büyük olan bir polinomun
xn + a ile bölümünden kalanı bulmak için, xn yerine –a yazılır.
(xn + a = 0 ise, xn = –a)


F. P(x) İN (x – a) × (x – b) ÇARPIMI İLE BÖLÜNMESİ
Kural
1) P(x) polinomu (x – a) × (x – b) çarpımı ile tam olarak bölünebiliyorsa x – a ve x – b çarpanları ile de ayrı ayrı tam olarak bölünür.
2) x – a ve x – b aralarında asal polinomlar olmak üzere;
P(x), bu polinomlara ayrı ayrı tam olarak bölünebiliyorsa, (x – a) × (x – b) çarpımı ile de tam olarak bölünür.



G. P(x) İN (a × x + b)2 İLE BÖLÜNEBİLMESİ
P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
P(x) polinomu ve P'(x) polinomu ax + b ye tam olarak bölünür.
(P'(x), P(x) in türevidir.)

Buna göre, P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
01_Pol7
Rapor Et
Eski 18 Ocak 2011, 14:10

Polinomlarda Kalan bulma

#3 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Alıntı:
polinomlarda kalan bulma ile ilgili daha fazla bilgi istiyorum
AciL Lazımmmmmm
Rapor Et
Eski 28 Eylül 2011, 15:46

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

#4 (link)
Misafir
Ziyaretçi
Misafir - avatarı
p(x) = (xkare + -7)kare pol.nun
a) kat sayıları toplamı ?
b) çiftdereceli kat sayıları
c) tek dereceli kat sayıları ?
lütfen çözüüün.
Rapor Et
Eski 1 Ekim 2011, 10:21

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

#5 (link)
Misafir
Ziyaretçi
Misafir - avatarı
polinomda çift dereceli terimin formülü neden p(1)+p(-1) bölü 2 dir açıklar mısınız lütfen?
Rapor Et
Eski 5 Ekim 2011, 06:14

çift dereceli terimler katsayılar toplamı

#6 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Sabit Terim ve Katsayılar Toplamı | SayısalDershane
burada örnek var nedeni de yazıyo
Rapor Et
Eski 6 Ekim 2011, 16:17

polinomlar

#7 (link)
Misafir
Ziyaretçi
Misafir - avatarı
p(x-3)=2x kare -5x+7 =?
Rapor Et
Eski 2 Kasım 2011, 16:14

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

#8 (link)
Misafir
Ziyaretçi
Misafir - avatarı
p(x)polinomunda dereceleri nasıl bulacagız?
Rapor Et
Eski 2 Kasım 2011, 16:55

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

#9 (link)
LaDyGaGa
Ziyaretçi
LaDyGaGa - avatarı
A. POLİNOMLAR
01_Pol1 olmak üzere,
(çok terimli) denir.
Burada, a0, a1, a2, ... an reel sayılarına polinomun kat sayıları,
×[/b] xn terimindeki an sayısına terimin kat sayısı, x in kuvveti olan
n sayısına terimin derecesi denir.
Derecesi en büyük olan terimin derecesine polinomun derecesi denir ve der[P(x)] ile gösterilir. Derecesi en büyük olan terimin kat sayısına ise polinomun baş kat sayısı denir.
Polinomlar kat sayılarına göre adlandırılırlar. Kat sayıları reel sayı olan polinomlara reel kat sayılı polinom, kat sayıları rasyonel sayı olan polinomlara rasyonel kat sayılı polinom, kat sayıları tam sayı olan polinomlara tam kat sayılı polinom denir.

Tanım
Sabit polinomun derecesi 0 (sıfır) dır.
Tanım
Sıfır polinomunun derecesi tanımsızdır.
Polinomların Eşitliği
Aynı dereceli terimlerinin kat sayıları eşit olan polinomlar eşittir.

B. POLİNOMLARDA İŞLEMLER
1. Toplama İşlemi
İki polinom toplanırken; dereceleri aynı olan terimlerin kat sayıları kendi aralarında toplanır, sonuç o terimin kat sayısı olarak yazılır.

2. Çıkarma İşlemi
P(x) – Q(x) = P(x) + [–Q(x)]
olduğu için, P(x) polinomundan Q(x) polinomunu çıkarmak, P(x) ile

–Q(x) i toplamaktır. Bunun için çıkarma işlemini, çıkarılacak polinomun işaretini değiştirip toplama yapmak biçiminde ele alabiliriz.

3. Çarpma İşlemi
İki polinomun çarpımı; polinomlardan birinin her teriminin diğer polinomun her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimler toplamınarak yapılır.

4. Bölme İşleminin Yapılışı
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer şekilde yapılır. Bunun için sırasıyla aşağıdaki işlemler yapılır:
1) Bölünen ve bölen polinomlar x değişkeninin azalan kuvvetlerine göre sıralanır.
2) Bölünen polinomun soldan ilk terimi, bölen polinomun soldan ilk terimine bölünür. Çıkan sonuç, bölümün ilk terimi olarak yazılır.
3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek şekilde bölünen polinomun altına yazılır.
4) Bölünenin altına yazılan çarpım polinomu, bölünen polinomdan çıkarılır.
5) Yukarıdaki işlemlere, kalan polinomun derecesi, bölen polinomun derecesinden küçük oluncaya kadar devam edilir.

Tanım
m > n olmak üzere,

der[P(x)] = m ve der[Q(x)] = n olsun.

P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) olsun.

Buna göre,
01_Pol3 der[P(x) + Q(x)] = m,
01_Pol3 der[P(x) – Q(x)] = m,
01_Pol3 der[P(x) × Q(x)] = m + n,
01_Pol3 der[B(x)] = m – n,
01_Pol3 der[[P(x)]k] = k × der[P(x)] = k × m,
01_Pol3 der[[P(xk)]] = k × der[P(x)] = k × m dir.

C. P(x) İN x = k İÇİN DEĞERİ
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunun x = k için değeri,
P(k) = a0 + a1 × k + a2 × k2 + … +an × kn dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 1 yazılırsa,
P(1) = a0 + a1 + a2 + ... + an olur.
Bu durumda P(1) in değeri P(x) polinomunun kat sayıları toplamıdır.

Sonuç
Herhangi bir polinomda x yerine 1 yazılırsa, o polinomun kat sayıları toplamı bulunur.
Örneğin, P(x + 7) polinomunun kat sayıları toplamı,
P(1 + 7) = Pmsn_note dir.

Kural
P(x) = a0 + a1 × x + a2 × x2 + … + an × xn
polinomunda x = 0 yazılırsa,
P(0) = a0 olur.
Bu durumda P(0) ın değeri P(x) polinomunun sabit terimidir.

Sonuç
Herhangi bir polinomda x yerine 0 yazılırsa, o polinomun sabit (x ten bağımsız) terimi bulunur.
Örneğin, P(2x + 3) polinomunun sabit terimi,
P(0 + 3) = P(3) tür.


D. P(x) İN (ax + b) İLE BÖLÜNMESİYLE ELDE EDİLEN KALAN
P(x) in ax + b ile bölünmesiyle elde edilen bölüm B(x), kalan K olsun. Buna göre,
01_Pol4

Yani; P(x) polinomunun ax + b ile bölünmesiyle elde edilen kalanı bulmak için, ax + b = 0 denkleminin kökü olan 01_Pol5 hesaplanır.

Sonuç
01_Pol3 P(x) polinomunun x – a ile bölümünden kalan P(a) dır.
01_Pol3 P(x + b) polinomunun x – a ile bölümünden kalan

P(a + b) dir.
01_Pol3 P(3x + b) polinomunun x – a ile bölümünden kalan

P(3 × a + b) dir.

E. P(x) İN xn + a İLE BÖLÜMÜNDEN KALAN
Kural
Derecesi n den büyük olan bir polinomun
xn + a ile bölümünden kalanı bulmak için, xn yerine –a yazılır.
(xn + a = 0 ise, xn = –a)


F. P(x) İN (x – a) × (x – b) ÇARPIMI İLE BÖLÜNMESİ
Kural
1) P(x) polinomu (x – a) × (x – b) çarpımı ile tam olarak bölünebiliyorsa x – a ve x – b çarpanları ile de ayrı ayrı tam olarak bölünür.
2) x – a ve x – b aralarında asal polinomlar olmak üzere;

P(x), bu polinomlara ayrı ayrı tam olarak bölünebiliyorsa, (x – a) × (x – b) çarpımı ile de tam olarak bölünür.


G. P(x) İN (a × x + b)2 İLE BÖLÜNEBİLMESİ
P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
P(x) polinomu ve P'(x) polinomu ax + b ye tam olarak bölünür.

(P'(x), P(x) in türevidir.)
Buna göre, P(x) polinomu (ax + b)2 ile tam bölünebiliyorsa,
01_Pol7 <div>
__________________
Rapor Et
Eski 10 Aralık 2011, 20:53

Polinomlarda çift dereceli terimlerin kat sayılarını bulma kuralı nedir?

#10 (link)
Misafir
Ziyaretçi
Misafir - avatarı
p(k)nın bulunması ile p[h(x)] in bulunması arasındaki fark nedir? hangisinde x'in yerine istenen yazılır hangisinde eşitlenerek yapılır ?
Sponsorlu Bağlantılar
Rapor Et
Cevap Yaz Yeni Konu Aç
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.419 saniyede (86.51% PHP - 13.49% MySQL) 17 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +2 - Saat: 17:09
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi