Arama

Enerji üretim yöntemleri nelerdir?

En İyi Cevap Var Güncelleme: 22 Aralık 2010 Gösterim: 18.688 Cevap: 2
Misafir - avatarı
Misafir
Ziyaretçi
5 Ekim 2010       Mesaj #1
Misafir - avatarı
Ziyaretçi
Başlıktaki konuyu araştırıyorum ama yalnızca elektrik değil diğer enerjileri de üretim teknikleri de dahil
EN İYİ CEVABI ener verdi
Alıntı
Misafir adlı kullanıcıdan alıntı

Başlıktaki konuyu araştırıyorum ama yalnızca elektrik değil diğer enerjileri de üretim teknikleri de dahil

Aşağıdaki linkleri inceleyiniz.

Sponsorlu Bağlantılar
Biyokütleden enerji yöntemleri

Uzay kaynaklı enerji yöntemleri


ELEKTRİK ENERJİSİNİN ÖZELLİKLERİ, ÜRETİLMESİ, TAŞINMASI VE DAĞITIMI

FİZİK –1 MADDE ÖZELLİKLERİ & ELEKTRİK

ELEKTRİK ENERJİSİNİN ÖZELLİKLERİ
- Elektrik enerjisinin diğer enerji türlerine dönüştürülmesi kolaydır.

- Diğer enerji türlerine göre çok uzaklara taşınması ve kullanılması son derece rahattır.

- Verimi yüksektir. Bir enerji, istenen başka bir enerji türüne dönüştürülürken, ekseriya istenmeyen başka enerji türleri de ortaya çıkar. Bunların arasında özellikle ısı enerjisinin büyük olması dikkati çeker. İstenmeyen bu ısı enerjisi, yararlanılamadığı için yitirilir ve verimi düşürür. İşte elektrik enerjisinin ısıdan başka bir enerjiye dönüştürülmesinde oluşan ısı enerjisi az olduğu için verimi yüksektir.

- Elektrik enerjisi sayısız bir çok parçaya ayrılarak kullanılabilir. Örneğin: Bir elektrik santralında kazanılan elektrik enerjisi, enerji taşıma hatlarıyla büyük kentlere götürülmekte ve orada sayısız konut ve iş yerlerine dağıtılarak kullanılmaktadır.

- Elektrik enerjisi bulunduğu yerin ekonomik, sosyal ve kültürel düzeylerini hızla yükseltir ve kendisine karşı duyulan gereksinmenin artmasına gene kendisi neden olur.

- Elektrik enerjisi toplumların ekonomik, sosyal ve kültürel yönlerden kalkınmasını sağlayan ve çağdaş uygarlığın en önemli araçlarından biri durumundadır.

- Son 50 yıl içinde baş döndürücü bir hızla ilerleyen teknolojideki gelişimler ve hatta bir ev kadınının eli altına bir makinanın verilmesi (örneğin çamaşır makinesi) elektrik enerjisi sayesinde olanaklı olmuştur.

Elektrik enerjisinin belirtilen bu ve bunlara benzer avantajları ve iyi yönleri yanısıra sakıncalı yönleri de vardır. Bunların başında elektrik enerjisinin depo edilemeyen bir enerji türü olması gelir. Nitekim elektrik enerjisi üretildiği anda kullanılmak zorunluluğundadır. Bundan dolayı üretim ile tüketim arasında devamlı bir dengenin bulunması gerekir. Ayrıca üretim sisteminde bir arıza ortaya çıktığında, bu sisteme bağlı sayısız abonede hizmetlerin durmasına ya da aksamasına neden olur. Bu nedenle, elektrik enerjisinin üretiminde sürekli bir devamlılığın sağlanması ve elde büyük ölçüde yedek sistemlerin bulundurulması zorunludur. Elektrik enerjisinin bir başka sakıncası da üretimine paralel olarak taşıma ve dağıtımı için özel düzenlere kesinlikle gereksinme duymasıdır. Oysaki, örneğin: bir dokuma fabrikası ürünlerini tüketiciye götürmek için özel yollara ve taşıtlara gereksinme duymaz. Bu görevi herkesin yararlandığı bir yoldan ve bir kamyon ile yapabilir. Buna karşın elektrik enerjisinin taşıma ve dağıtılması için projeye ayrıca yatırımların (örneğin: direkler, teller, izolatörler...) katılması zorunlu olmaktadır.

ELEKTRİK ENERJİSİNİN İLETİMİ (TAŞINMASI) VE DAĞITILMASI

Genellikle birbirinden uzak olan elektrik üretim santrallarıyla tüketim merkezleri arasındaki bağlantı, iletişim şebekesi ve enterkonnekte sistemlerle sağlanır. Elektrik depolanamadığından, üretildiğinde hemen kullanıcıya ulaştırılması gerekir. Bu da üretim ve tüketimin her an dengede tutulması demektir. Öte yandan tüketim miktarı bölgelere, mevsimlere ve hatta günün saatlerine göre büyük değişiklikler gösterebilir. Enterkonnekte sistemler, üretimi tüketim düzeyindeki değişimlere uyarlamayı sağlar. Elektriğin iletimiyse, gerilimin gücüne bağlı olarak taşıma iletim sığası değişen elektrik hatları aracılığıyla gerçekleştirilir. Gerilim arttığında iletim işleminde ciddi tasarruflar sağlanır: enerji kaybı gerilim düzeyiyle ters orantılı olduğu için enerjiden, hat miktarı azaldığı için yerden, şebekedeki bakım masrafları azaldığı için de harcamalardan tasarruf edilir. Mesela, 1000 MW’lık bir nükleer santralın ürettiği elektriği boşaltmak için, 380000V’luk bir hat kullanılır; oysa aynı işi görmek için 154000V’luk altı hat veya 66000V’luk 30 hat gerekir.
Enterkonnekte sistemler çok dağınık bölgelerin üretim imkanlarını birleştirerek, aynı malzeme güvenliği bakımından gerekli olan güç miktarının azalmasını sağlar. Arızalar meydana geldiğinde, yerinde değiştirilmesi gereken parçalar o an için elde bulunmayabilir. Bu durumda enterkonnekte sistem yardıma koşar; elektrik dağıtım istasyonlarında gerilimin akış yönü ayarlanarak anında ve en az harcamayla üretim ile tüketim arasındaki denge sağlanır. Şebekenin yönetimi için gerekli emirler ve bilgiler özel iletişim hatları, özel telsizler kullanılarak sağlanır.

Şebeke ve gerilimler
Gerilim ne kadar yüksek olursa, bir hattın iletebileceği elektrik miktarı da o kadar yüksek olur. Üretim santrallarından çıkan çok büyük miktarlardaki akımı iletebilen hatlar Türkiye’ de 380000V veya 154000V düzeyindedir. Uzak mesafeler arasına kurulan büyük iletişim şebekeleri ve enterkonnekte sistemler bu tip hatlardan oluşur. Bu şebekeler, bütün üretim santrallarını birbirine bağlar. Elektrik, gerilimi düşürüldükten sonra bölgesel şebekelere iletilir ve bu şebekeler yardımıyla ayrılarak dağıtım merkezlerine gönderilir. İletim şebekesi bölgesel, ulusal veya uluslar arası ölçekte de olsa, yönetim ve organizasyon nedenleriyle iletim işlemi Türkiye’ de 34500V veya bunun üzerindeki bir gerilim düzeyinde gerçekleştirilir. En çok kullanılan 380000V, 154000V, 66000V veya 24500V’tur. 34500V’un altındaki gerilimlere ortalama gerilimler olan 20000V ve 15000V veya alçak gerilim olan 380 veya 220V’luk “dağıtım gerilimleri” denir. Petrokimya, metalürji (özellikle alüminyum), demir-çelik fabrikaları ve elektrikli ulaşım hatları (tren, tramvay) çok büyük tüketicidir. Orta gerilim şebekeleri orta ve küçük sanayi işletmeleri ile büyük mağazalar veya yöresel yönetimler, hastaneler, okullar gibi merkezleri besler. Son olarak, milyonlarca yerel kullanıcı, alçak gerilimli elektrik akımıyla beslenir.

Elektrik Dağıtım Merkezleri ve Dağıtım Bağlantıları
Elektrik üretim merkezleriyle tüketicileri arasındaki bağlantı, elektrik iletim şebekesiyle anında sağlanır. Elektriğin dağıtımı, üretim ve iletim merkezlerindeki karmaşık bir programlama sistemiyle gerçekleştirilir. Dağıtım Türkiye Elektrik Kurumu (TEK) tarafından hazırlanarak uygulanmakta olan bir plana göre Türkiye çapında yapılır. Bu amaçla haberleşme ve telekomünikasyon araçlarından, otomasyondan ve önceden hazırlanan istatistik verilerine dayalı öngörülerden yararlanılır. Bu öngörülerde, ele alınan günün birkaç yıl öncesine kadar şebeke ve tüketim durumu dikkate alınır. Eskiden yılda bir kere yapılan tahminler, zamanla haftalık, günlük hale gelmiş ve tüketimin daha da yakından izlenmesi imkanı sağlanmıştır. Dağıtım ve iletimde meteorolojik koşullar da çok önemlidir; kapalı bir hava veya güneşli bir hava büyük sıcaklık farklılıklarına yol açar ve bu da milyonlarca konutun ısıtma ve aydınlatılmasında rol oynar. Elektrik akımının iletimi ve dağıtımı şebekeye bağlı dağıtım merkezlerince (transformatör istasyonları) sırayla yapılır.
Şebeke dağıtım merkezlerinin iki ayrı işlevi vardır: hem hatların birbirine bağlanmasını sağlar (enterkoneksiyon), hem de dönüştürme işlevi üstlenir (transformatör). Transformatör istasyonları transformatörler (dönüştürücü), disjonktörler ve ayırıcılarla donanmıştır. Transformatörler, duruma göre elektrik akımının gerilimini yükseltir veya alçaltır; dolayısıyla, iletim ve dağıtıma en uygun gerilimi seçerek elektriğin taşınmasında büyük önem taşır. Disjonktörler gerilim hattında herhangi bir aksaklık olduğunda akımı otomatik olarak kesmeye yarar. Hattın şebekeden ayrılması gerektiğinde devreye sokulabilir. Ayırıcılar da aynı rolü üstlenir, ama hatta akım olmadığı zaman çalışır ve hattı şebekeden tamamen ayırmakta kullanılır. Bir dağıtım merkezinin birçok farklı öğesi çoğunlukla açıktadır; bazı kentlerde bir dizi öğe yeraltında veya bina içlerinde olabilir. Bunlar basınçlı gaz zarfı içinde tutulur. Atmosferle pek temas etmediğinden, bundan kaynaklanan kirlenmelere uğramaz. Merkezler biraz uzaktaki bir kumanda istasyonundan yönetilir.

Elektriğin Ülke Çapında Dağıtımı
Türkiye’de elektrik dağıtımından genelde Türkiye Elektrik Kurumu (TEK) sorumludur; bazı bölgelerde bu işi özel şirketler üstlenmiştir. Dağıtım kuruluşu tüketim ihtiyacına göre şebekeler kurmak, bunları yönetmek ve yenilemek, tüketicileri şebekeye bağlayan bağlantıları yapmak, dağıtılan elektriğin sürekliliğini sağlamak ve miktarını sabit kılmakla yükümlüdür. İletim sistemi aracılığıyla yüksek gerilimde taşınan elektrik, alçak gerilime düşürülerek bir dağıtım merkezine, yani transformatör istasyonuna ulaştırılır. Kırsal bölgelerde bu şebekeler açıktadır; yerleşim bölgelerindeyse çoğunlukla yeraltına döşenmiştir.
Orta gerilim/alçak gerilim merkezlerinin bağlayıcı elemanı, farklı gerilimdeki iki şebekeyi birbirine bağlayan ve kısaca trafo denen transformatördür. Alçak gerilimli dağıtım sistemi tüketicilere üç fazlı ve bir topraklı (nötr) elektrik sağlar; elektrik iki gerilim düzeyinden oluşur. Bunlardan giderek yaygınlaşanı fazlar arası 380V ve faz-toprak arası 220V gerilimidir. Fazlar arası 200V ve faz-nötr arası 127V olanı giderek azalmaktadır. En çok kullanılan sistemler üç fazlı 380V ve tek fazlı 220V’tur. Bu seçeneğe göre, bir alet 4 tele veya 2 tele bağlanır. Elektrik akımının frekansı bütün Avrupa’da ve Türkiye’de 50Hz, Amerika kıtasındaysa 60Hz’dir. Bir motor veya bir bilgisayar, aygıtın içinde kullanılan frekansa eşit frekanslı bir şebekeye bağlanmadıkça düzgün çalışmaz.

ELEKTRİK ENERJİSİNİN ÜRETİLMESİ
TERMİK SANTRALLAR
Termik santrallar, kömür, akaryakıt veya gaz gibi fosil yakıtların yakılması yoluyla elektrik üretir. Su santrallarda, ocağın kazan bölümünde dolanan su, çok sıcak buhar haline dönüşür ve bu buhar, elektrik akımı üreten alternatörlere bağlı türbinleri çalıştırır. İlk büyük petrol krizi sanayileşmiş Batılı ülkelerde bu tip termik santralların yapımını yavaşlattı. Ancak gene de bu tip santrallar, birçok ülkede enerji açığını kapatmakta görev üstlenmeye devam etmektedir.
Termik santralların ürettiği ısının bir bölümü çevreye atılır. Soğutma suyunun sağlandığı kıyı ve ırmak suları birkaç derece ısınır. Kömürün yanmasıyla oluşan küllerin bir bölümü bacaların elektrostatik filtrelerinden dışarı sızar. Ve nihayet, bütün fosil yakıtlar azot ve kükürt içerir ve bu maddeler yanma sonrasında oksitler halinde atmosfere karışır. Çevre uzmanlarına göre gaz atıklar, ormanlar için son derece zararlı olan asit yağmurlarının en önemli nedenidir.


Termik Santralın Çalışma Yöntemi
Elektrik enerjisine dönüştürülecek olan termik enerjiyi üretmek için, yakıt bir buhar kazanında yakılır. Buhar kazanı, bir ocak ile bir boru demetinden oluşur; boruların içinde dolanan su, burada ısıtılır ve buhar haline geldikten sonra türbinlere gönderilir. Eğer yakıt olarak kömür kullanılıyorsa, bu kömür önce öğütülüp toz haline getirilir; sonra sıcak havayla karıştırılır ve brülörle buhar kazanının yanma odasına püskürtülür. Eğer sıvı yakıt kullanılıyorsa, bu sıvı yakıt önce akışkanlığının artması için ısıtılır, sonra kullanılır.
600MW’lik bir santralda buhar 565 derecelik bir sıcaklığa ve 174 bar düzeyinde bir basınca çıkarılır. Yüksek basınçlı türbinlere yollanan buhar kısmen genleşerek türbin çarklarını döndürür. Bu ilk aşamadan geçen buhar, enerjisinin bir bölümünü korur. Aynı buhar, ayrı bir devre aracılığıyla yeniden kazana gönderilir ve tekrar ısıtılır; sonra 34 bar düzeyinde bir basınçla, orta basınçta çalışan türbine basılır. Düşük basınç bölümündeyse buhar tam olarak genleşir. Bu çevrimin sonunda basıncı 300 milibara düşen buhar kondansöre gönderilir.
Kondansör, buharın yeniden suya dönüştürüldüğü soğuk bir kaynaktır. Buhar burada, içinde soğutma suyunun dolandığı binlerce küçük çaplı boruya temas ederek tekrar suya dönüşür. Sonra pompalarla toplanır ve yeniden ısıtma çevrimine sokulur; bu amaç için türbinin farklı noktalarında ısıtılan buhardan yararlanılır. Böylece yeni çevrim başlamış olur: su tekrar buhar kazanına girer, burada ısıtılarak buharlaştırılır ve türbinlere doğru yollanır. Türbinlerin mekanik enerjiyse alternatör vasıtasıyla elektrik enerjisine dönüştürülür. Ve son olarak da bir transformatörde gerilimi yükseltilen elektik, genel iletim hatlarına verilir.

NÜKLEER GÜÇ SANTRALLARININ GENEL TANITIMI

Nükleer Güç Santralları ile Termik Santraller birbirleri ile benzer özellikler taşırlar. Her iki santral tipinde de elde edilen buharın ısıl enerjisi türbinde mekanik enerjiye ve mekanik enerji de dejeneratörlerde elektrik enerjisine dönüştürülerek elektrik üretilir. Bu santraller arasındaki temel fark buharın elde ediliş yöntemidir. Bütün nükleer reaktör tiplerinde bölünmeden açığa çıkan enerji buhar üretiminde kullanır ve bu buhar üretimi doğrudan reaktörün korunda ya da buhar üreteçlerinde yapılır. Bu nedenle nükleer reaktörlerdeki bölünme reaksiyonu termik santrallarda fosil yakıt yakmakla aynı işleve sahiptir. İlk olarak nükleer güç santrallerini tanıtmadan önce bölünme (fisyon) reaksiyonu mekanizmasını anlatmakta yarar vardır. Nükleer reaksiyonda açığa çıkan enerji, temelde U235 izotopunun ya da herhangi bir bölünmeye yatkın (fisil) izotopun (Pu239, U233) nötronla etkileşmesinden ötürü parçalanması olayı sonucunda açığa çıkan fazlalık bağlanma enerjisidir. Nötronla etkileşen U235 çekirdeği kararsız hale geçerek, kendisinden daha hafif iki çekirdeğe ayrılır ve bu esnada da ortalama olarak iki nötron açığa çıkarır. Bu reaksiyon sonucu açığa çıkan bölünme enerjisi yaklaşık 200 MV'dir. Bu enerji buhar üretimi için soğutucuya aktarılır ve açığa çıkan nötronlardan biri bölünmeye yatkın başka bir izotopu parçalayarak zincirleme reaksiyonuna sebep olur. Diğer nötron ise reaktör içindeki diğer malzemeler tarafından yutulur ya da sistemden kaçar. Nükleer reaktörler bu zincirleme bölünme reaksiyonunun kontrollü olarak yapıldığı sistemlerdir. Bölünme reaksiyonunun önemini anlamak için 1 kg U235 izotopunun yanması sonucu açığa çıkan enerjinin yaklaşık 1.3 milyon kg kömürünkine eşdeğer olduğunu belirtmek yeterli olacaktır.
Bölünme reaksiyonu sonucu açığa çıkan nötronların etkili bir şekilde kullanılabilmesi için bölünmeye yatkın izotoplarla etkileşme olasılıklarını arttırmak gerekir. Bu nedenle bölünme reaksiyonlarından açığa çıkan hızlı nötronlar moderatör adı verilen yavaşlatıcı malzemeler yardımı ile yavaşlatılarak bölünmeye yatkın malzemelerle etkileşim olasılıkları arttırılır. Diğer bir malzeme de yansıtıcı (reflector) dır. Bu malzeme korun etrafına yerleştirilerek nötronların sistemden dışarı kaçma olasılıklarını azaltmak için kullanılır. Moderatör malzemesi aynı zamanda yansıtıcılık işlevini de görebilir.
İlk kontrollü bölünme reaksiyonu 1942 yılında Amerika Birleşik Devletlerinde inşa edilen CPI Reaktöründe gerçekleştirilmiştir. Bu reaktörde yakıt malzemesi olarak doğal uranyum ve moderator olarak grafit kullanılmıştır. İlk nükleer reaktörde olduğu gibi nükleer reaktör tasarımcılarının reaktör yakıtı için seçimleri doğal uranyum (%0.71 U235, %99.27 U238) ya da %3, %4 oranında zenginleştirilmiş uranyumdur. Eğer yakıt doğal uranyum seçilirse moderator olarak grafit ya da ağır su kullanılmalıdır.
Günümüzde, elektrik üretimi için kullanılan santralların büyük bir bölümü Basınçlı Su Reaktörü (PWR), Kaynar Su Reaktörü (BWR), ve Basınçlı Ağır Su Reaktörüdür (PHWR). Bunlardan ilk ikisi, hafif su soğutmalı termal reaktör sınıfına girer, moderator ve reflektör malzemesi olarak da hafif su kullanılır. Üçüncü reaktör tipi ise dünyada ilk olarak Kanada'da elektrik üretimi için kurulan ve soğutucu olarak ağır su kullanan Basınçlı Ağır Su Reaktörüdür.

BASINÇLI SU REAKTÖRÜ (PWR)

Basınçlı su reaktörleri ticari olarak elektrik üretimi için ABD'de kullanılan ilk reaktör tipidir. Bu tür reaktörlerde korda üretilen enerji birincil devre soğutucu vasıtasıyla kordan çekilir. İkincil devrede buhar üreteçlerinden alınan buhar türbinlerinde genişletilerek jeneratörde elektrik üretilir. Birincil devre basıncı, soğutucu suyun kaynamasını engellemek için, 15-16 MPa civarındadır. Soğutucunun kora giriş sıcaklığı 290-300 C, çıkış sıcaklığı ise 320-330 C civarındadır. Reaktör korundan çıkan soğutucu türbinlerde kullanılan buharın üretimi için buhar üreteçlerine gönderilir. Reaktörlerin birincil soğutucu devreleri iki, üç ya da dört tane benzer döngüden oluşur. Her bir döngüde bir buhar üretici, bir reaktör soğutucu pompası ve bağlantı boruları bulunur. Ayrıca reaktör basıncını kontrol edebilmek için bir basınçlayıcı bu döngülerden biri üzerinde bulunur.
Yakıt içinde fisyondan açığa çıkan nötronlar soğutucuda yavaşlatılarak zincirleme fisyon reaksiyonunu sağlarlar. Aynı anda açığa çıkan kinetik enerjinin büyük bir kısmı yakıt içinde ısıl enerjiye dönüşür ve bu enerji ısı iletimi ile soğutucuya aktarılır, bir kısmı ise hızlı nötronlar tarafından moderasyon anında moderator vazifesi de gören soğutucuya aktarılmıştır.
Reaktör koru dayanıklı bir çelikten yapılmış silindirik bir basınç kabı içerisinde yerleştirilmiştir. Basınç kabı bu tip reaktörlerin ömrünü kısıtlayan en önemli bileşendir.
Hemen hemen bütün reaktör tiplerinde reaktör basınç kabı ve soğutucu sistemleri koruma kabı adı verilen çelik bir kabuğun içindedir. Bu çelik kabuk betondan yapılmış ikinci bir koruyucu yapının içerisinde yer alır. Bu sistem dış etkilerden reaktör sistemini korumak ya da reaktörden bir kazadan dolayı açığa çıkabilecek radyasyonun çevreye sızmasını önlemek için tasarlanmıştır.

KAYNAR SU REAKTÖRÜ (BWR)

Kaynar su reaktörü dünyada basınçlı su reaktöründen sonra en yaygın olarak kullanılan reaktör tipidir. Kaynar su reaktörleri (BWR) birçok yönden PWR reaktörüne benzemekle birlikte, temel fark reaktör koru içinde kaynama olayına izin verilmesidir. BWR tipi reaktörlerin diğer hafif sulu reaktörlere göre üstünlüğü reaktör koru içinde doğrudan elde edilen buharın türbinlere gönderilmesidir. Bu nedenden dolayı BWR reaktörleri doğrudan çevrim ile çalışır. Basıncın PWR tipi reaktörlere göre daha düşük olması nedeniyle (7 MPa) basınç kabı et kalınlığı daha düşüktür.

BASINÇLI AĞIR SU REAKTÖRÜ (PHWR)

Basınçlı Ağır Su Reaktörleri, Basınçlı Su Reaktörleri ile benzer özellikler taşırlar. Ağır su reaktörü olarak adlandırılmalarının nedeni moderator ve soğutucu için ağır su (D20) kullanmalarıdır. Bu tür reaktörlerin en yaygın olarak kullanıldığı ülke Kanada'dır. Kanadalılar son 40 yılda CANDU (CANada Deuterium Uranium) adını verdikleri Kanada reaktörünü tasarlayıp geliştirerek Basınçlı Ağır Su Reaktörü teknolojisinde lider olmuştur.
CANDU reaktörlerinde yakıt olarak doğal uranyum kullanıldığı için zenginleştirme tesislerine ihtiyaç yoktur. Düşük basınçta moderator, ağır su (D20) ve yatay silindir şeklinde bir reaktör kabı vardır. Reaktör kabının içinde yatay şekilde geçen 380 adet yakıt kanalı bulunur. Yakıt kanalları doğal uranyum yakıt ve ağır su soğutucusundan oluşur. Yakıt kanalındaki yakıt elemanları basınç tüpü içindedir.

HİDROELEKTRİK ENERJİ

M.Ö. 3000-2000 yıllarından itibaren Mezopotamya ve Çin 'de, Mısır ve Anadolu 'da suyun potansiyel ve kinetik enerjisinden faydalanılmıştır. Buhar makinasının icadına kadar bir cismi hareket ettirmek için kuvvet kaynağı olarak sadece su ve rüzgardan yararlanılıyordu. Rüzgarın süreksiz olması nedeniyle daha çok su kullanılmıştır.
Suyun Potansiyel ve kinetik enerjisinden faydalanılarak çeşitli tipte hidroelektrik tesisler yapılabilir. Çöllerde ve sıcak ülkelerde suyun buharlaşmasından faydalanmak suretiyle yapılan depresyon tesisleri, gel-git olayından ve dalga enerjisinden faydalanılarak yapılanlarla akarsular üzerinde kurulan sistemler buna örnek verilebilir.

Depresyon Tesisleri:
Denizden alçakta olan çöllerde veya denize kıyısı olan çok sıcak bölgelerde, yüzeyden suyun fazla buharlaşmasından yararlanmak amacıyla hidroelektrik tesisler yapılmaktadır. Çok sıcak bölgelerdeki uygun bir koy bir duvar aracılığıyla denizden ayrılır. Denizden ayrılan kısımda serbest su yüzeyinden buharlaşma sonucunda, buranın su seviyesi alçalır. İşte buharlaşan bu su miktarına eşit debi denizden alınarak hidroelektrik tesisi kurulur. Çöllerde yapılan tesislerde ise çölün denizden alçak olan kesimlerinde bir tünel veya bir kanal ile deniz suyu taşınır. Çukur bölgede yapılan tesiste ise enerji üretilir. Çukur bölgede oluşan göl kesimden bir yıl içinde buharlaşan su miktarına eşit olan debi, denizden alındığı takdirde zaman içinde gölde kararlı bir seviye oluşur. Çukur bölgede oluşan bu gölün hacminin deniz suyundaki tuzu depolayacak kadar büyük olması gerekir.
Kattara Hidroelektrik projesi. Kattara Çölü Kahire'nin 300 km batısında ve Akdeniz seviyesinden 135 m alçaktadır. 80 km uzunluğundaki bir tünel vasıtasıyla 600 m³/sn lik deniz suyu bu çukura aktarılacaktır. Oluşacak göl ham biriken tuzları hem de 60 m yüksekliğindeki 12000 m² 'lik bir alana sahip gölün su yüzeyinde büyük miktarda buharlaşma gerçekleşecektir. Yılda yaklaşık 2 m kalınlığında su buharlaşırsa, yılda toplam 24 milyar m³ su buharlaşacaktır. Bu da ~761 m³/s debiye karşılık gelir. Fırat nehrinin debisi ise 600 m³/s 'dır. Tesisin kur gücü 1200MW'dır.

Gel-Git Hidroelektrik Tesisleri:
Açık denizlerde meydana gelen gel-git olaylarından yararlanılarak elektrik enerjisi elde edilmesi için kurulan tesislerdir. Yükselen deniz suyu bir nehrin ağzında yapılan hazneye veya bir koya doldurulur. Boşalırken, dolarken veya her iki yönde çalışan tek ve çift hazneli gelgit tesisleri yapılmıştır.24 saat içinde, 20 dk süre ile deniz iki defa kabarır ve alçalır. Dolarken ve boşalırken aynı türbin çalışabilir. İki taraf arası seviye farkı 3 m olunca türbinler durur. Daha sonra tekrar kapaklar açılarak deniz suyu doldurulur ve boşaltılır. Bu tesislerin en büyüğü Fransa'da Atlantik sahilindeki Rance Tesisidir. Bu santralde her biri 10 MW gücünde 24 türbin-jeneratör grubu vardır. Tesisi çalıştırmakta sadece bir kişi görevli çünkü tesis tam otomatik olarak çalışmaktadır. Tesis 240 MW gücündedir.

Dalga Enerjisinden faydalanılarak Enerji Üreten Tesisler:
Bu tesisler henüz uygulama safhasına girmemiştir. Dalga enerjisinin de süreksiz olması bu tür tesislerin faaliyet sürelerini kısıtlamaktadır. İstanbul Boğazındaki akıntıdan enerji elde edilmesi ise mümkün değildir. Çünkü tesisin masrafları üretimle elde edilecek gelirin çok çok üstündedir. Ayrıca tesisin kurulabilmesi için Boğaz deniz trafiğine kapatılacaktır ve üretilecek enerji ise yalnızca 5 MW gücündedir. Yani konvansiyonel olmayan tesisler ancak belirli yerlerde ve belirli koşullar altında yapılabilmektedir.

Akarsular üzerinde kurulan Hidroelektrik Tesisleri:
Bu tür santraller iki ana bölüme ayrılır. Barajsız hidroelektrik santralleri, nehir santralleri veya çevirmeli hidroelektrik tesisleri.

Barajsız Hidroelektrik Tesisleri:
Akarsu, bağlama adı verilen bir sistem aracılığıyla kabartılarak su alınır. Alınan su bir tünel veya kanal yardımıyla az bir eğim oluşturacak şekilde, aynı veya başka bir akarsu yatağına bırakılır. Böylece seviye farkından yararlanılarak elektrik enerjisi üretimi sağlanır. Akarsu üzerine yapılan bağlama yardımı ile kabartılan suyun, seviye farkından yararlanarak kanalsız veya tünelsiz tesisler yapılmaktadır.

Barajlı Hidroelektrik Tesisler:
Akarsu üzerinde bir baraj yardımı ile mevsimlik, yıllık veya çok yıllık hazneler. Elektrik enerjisi üretimi ihtiyaca göre ayarlanarak, pik saatlerindeki ihtiyaç kolayca karşılanır. Yedek türbinler yardımı ile yağışlı yıllarda güvenilir enerjinin üstünde ikincil enerji üretilebilir ve haznenin büyüklüğüne göre kurak mevsimlerde enerji ihtiyacı karşılanabilir. Bunlara karşın barajların önemli olumsuzlukları da göz ardı edilmemelidir.

JEOTERMAL ENERJİ
Enerji Kaynakları:
Jeotermal enerji, Dünya’nın ısısından elde edilen enerjidir. Jeotermal sözcüğü “yer” ve “ısı” anlamındaki Yunanca iki sözcükten üretilmiştir. Bilim adamları, jeotermal ısının nereden kaynaklandığı, yeryüzüne çıkan buharın nasıl oluştuğu konusunda henüz tam bir görüş birliğine varamamışlardır. Büyük bir olasılıkla bu ısının kaynağı , Dünya’nın derinliklerindeki “magma” denilen erimiş kayaç kütlesidir. Yüzeye püsküren buharın da, yüzeyden derinlere sızan yağmur sularının, bu kızgın magma bölgesinde ısınıp buharlaşması sonucunda oluştuğu sanılmaktadır. Bu ısıdan, İzlanda ve Japonya’da olduğu gibi, evlerin, hamamların ve seraların ısıtılmasında yararlanılabilir. Elektrik enerjisi üretiminde de, üreteçlere bağlı buhar türbinlerinin çalıştırılmasıyla jeotermal enerji kullanılabilir. İlk jeotermal enerji santralı 1931’de İtalya’daki Larderello’da kuruldu. Bugün Larderello’da toplam gücü 351 megawatt olan ve yaklaşık 600 bin nüfuslu bir kenti beslemeye yeterli elektrik üreten bir grup jeotermal enerji santralı bulunmaktadır. Ucuz enerji çağından pahalı enerji çağına girilirken ömrü son derece kısıtlı olan konvansiyonel enerji kaynaklarının, bir gün tükenebileceği düşünülmeye başlanmıştır. Bu nedenle, hızla artan nüfusun ve teknolojik yeniliklere bağlı olarak gelişen endüstrinin enerji gereksinimi karşısında, konvansiyonel enerji kaynaklarının yerine geçebilecek, yeni ve yenilenebilir doğal kaynakların araştırılması bulunması ve bunlardan yararlanılması konusunda büyük bir arayış içine girilmiştir.
Dünyadaki enerji kaynakları fosil kaynaklar (kömür, petrol, doğal gaz, turba, petrollü, kaynaklar, vb.) yenilenebilir kaynaklar (hidrolik, biyomas, jeotermal, jeotermal gradyan, rüzgar, gelgit, dalga, vb.) olmak üzere iki bölüme ayrılabilir. Bunlardan yenilenebilir kaynaklar grubuna giren Jeotermal Enerji, önemli bir

yer tutmaktadır.
Yerkabuğu içerisinde hazne kayalarda bulunan, basınç altında aşırı derecede ısınmış suların enerjisidir. Ekonomik önemdeki jeotermal enerji birikimi, 40°C-380°C arasında olup, 3000 m 'ye kadar olan derinliklerde geçirimsiz kayalar altında yer alan, geçirimli hazne kayalar içinde bulunmaktadır. Şimdiye kadar üç çeşit jeotermal sistemin varlığı saptanmıştır. Sıcak kuru kaya sistemi, sıcak su sistemi, kuru bahar sistemi.

Sıcak Su Sistemi:
Yeryüzünde sıcak su esaslı sistemler Buhar esaslı sistemlerden yirmi kat daha fazla bulunmaktadır. Sıcak su sisteminde, derindeki hazne kaya içerisinde, basınç altında, yüksek sıcaklıkta, erimiş kimyasal madde bakımından çok zengin, farklı kimyasal özelliklerde sular bulunmaktadır. Bu tür sistemlerden sondajlarla yeryüzüne çıkarılan sıcak su+buhar karışımından elde edilen buhardan, elektrik enerjisi üretilmekte, buharı alınmış sıcak su ise atılmaktadır.

Kuru Bahar Sistemi:
Buhar esaslı sistemler , sıcak su esaslı sistemlerden farklı olarak, çok fazla ısınmış, nem miktarı az, sıcaklığı yüksek buhar üretirler. Bu tür buhar, bir enerji kaynağı olarak doğrudan jeotermal santrallere gönderilerek elektrik enerjisine dönüştürülmektedir. Bir bakıma bunlar yerkabuğu üzerinde oluşmuş, birer doğal nükleer reaktör olarak kabul edilir.

Sıcak kuru kaya sistemleri:
Yerküremizde özellikle genç, aktif volkanik kuşaklarda, jeotermal gradyanın çok yüksek olduğu bölgelerde, sıcak su içermeyen yüksek sıcaklığa sahip kızgın, kuru kayalar bulunmaktadır. Bu tür sistemlere soğuk su basılarak sıcak su+ buhar karışımı alınmakta ve bu, bir enerji kaynağı olarak kullanılmaktadır.

RÜZGAR ENERJİSİ
İnsanlar binlerce yıldır rüzgardan bir enerji kaynağı olarak yararlanmaktadır. Buna ilişkin olarak ilk akla gelen yelkenli teknedir. Rüzgar enerjisini kullanabilmenin üç yolu vardır: Yelkenli teknelerde olduğu gibi doğrudan hareketi sağlamak; yel değirmenlerinde olduğu gibi herhangi bir makinenin kanatlarını döndürmek; elektrik üreteçlerine bağlı türbinleri çalıştırmak. Rüzgar enerjisi, dönüşüme uğramış güneş enerjisidir. Güneş enerjisinin kayaları, denizleri ve atmosferi her yerde özdeş ısıtmaması nedeniyle oluşan sıcaklık ve basınç farkları rüzgarı oluşturmaktadır. Rüzgar bit merkez çevresinde dolandıklarında, santrifüj kuvveti etkisinde kaldıkları gibi, yeryüzü ve hava arasındaki sürtünme kuvvetinden de etkilenirler. Kutuplar ve ekvator arasındaki sürekli hava akımlarına göre, enerji üretimi açısından denizler, karalar, dağlar ve vadiler arasındaki yerel rüzgarlar daha önemlidir.
Rüzgar enerjisi bol ve serbest halde bulunan güvenilir ve sürekli bir enerji kaynağıdır. Havanın öz kütlesi az olduğundan, rüzgardan sağlanacak enerjinin miktarı hızına bağlıdır. Rüzgarın hızı yükseklikle, gücü ise, hızının küpü ile orantılı olarak artar. Sağlayacağı enerji, gücüne ve estiği süreye bağlıdır.
1982-92 döneminde Kaliforniya' da yaklaşık 150.000 rüzgar türbini kurulmuştur. Buralardan yaklaşık 3.000.000.000 kWh elektrik üretilmiş ve Kaliforniya' nın elektrik tüketiminin %1,2 buralardan sağlanmıştır. Dünyanın en büyük rüzgar çiftliği ABD' de kurulan Altamount Pass rüzgar tesisidir. 8160 Hektar alan kaplayan bu çiftlik 3500 adet 100 kW'lık ve 40 adet 300-450 kW'lık türbin bulunmaktadır.

Rüzgar Teknolojisi:
Rüzgar enerjisi Betz teoremine göre max. %59,3 etkinlikle mekanik enerjiye çevrilebilir. Bu çevirim, rüzgar türbini tarafından yapılır. Böyle bir türbin; çevredeki engellerin rüzgarı kesemeyecek kadar yükseklikte bir kule üzerinde bulunması gerekir. ayrıca yüksek verim için geniş düzlükler bu enerji kaynakları için daha elverişlidir. Türbinin rüzgara göre yönlendirilmesi, rotor ekseni ile rüzgar doğrultusu arasındaki yav açısını kontrol eden mekanizmayla sağlanır. Elektrik üretimini sağlayan bu makineye rüzgar jeneratörü adı verilir.
2000 yılı için kurulu kapasite hedefi ABD' de 2800 MW, Avrupa'da 6340 MW, Asya'da 3817 MW civarında olması tahmin edilmektedir. Avrupa'da en büyük kapasite Almanya'da 2000 MW olacak ve onu 1000 MW'la Danimarka takip edecektir. Gelecek 10 yıl sonunda ABD elektrik üretiminin %20 sini rüzgar enerjisinden sağlamayı hedeflemiştir. Avrupa Birliği ise 2005 yılında elektrik enerjisinin %20 sini yenilenebilir. kaynaklardan sağlamayı hedeflemektedir. Bu projede ise rüzgar enerjisine %2' lik bir pay ayrılmıştır. Elektrik; çağdaş yaşamın en yaygın enerji kaynaklarından birisidir. Kullanıldığı alanlar neredeyse sayılamayacak kadar çoktur. Evlerimizi aydınlatmak, elektrikli süpürge, çamaşır makinesi gibi ev aletlerini çalıştırmak, hatta yemek pişirmek ve odalarımızı ısıtmak için elektrik enerjisinden yararlanırız. Fabrika ve işyerlerindeki makineler ile bilgisayarlar ve telefon, radyo, televizyon yayınları gibi iletişim sistemleri için gerekli olan enerji gene elektrikten sağlanır. Motorlu taşıtlardaki ateşleme sistemini ve marş motorunu besleyen enerji kaynağı da akümülatörlerde depolanmış olan elektriktir. Öte yandan elektrikli trenler ve otomobiller gibi bazı taşıtlar tümüyle elektrik enerjisiyle yol alır. Kısacası elektrik insanların en vazgeçilmez ihtiyacı haline gelmiştir ve yaşantımızda son derece önemli bir rol oynar.

TANIMLAR VE KURAMLAR

VOLTMETRE: Herhangi bir devre elemanının uçları arasındaki potansiyel farkını ölçmek için kullanılır. İç direnci çok büyük olup devreye paralel bağlanır. Dolayısıyla üreteçten çekilen akımı etkilemez.

ÜRETEÇLER: Doğru akım sağlayan düzeneklere üreteç denir. Bir üretecin iç direnci üretece seri bağlı bir dış direnç gibi düşünülebilir.

Üreteçlerin Bağlanması:
a. Seri bağlama: Seri bağlamada üreteçlerden birinin negatif(-) kutbu diğerinin pozitif kutbuna bağlanır. Eşdeğer emk üreteçlerin emk’ları toplamına eşit olur.

b. Ters bağlama: Seri bağlamada üreteçlerden biri ters bağlanırsa, emk'sı büyük olan üreteç enerji üreten, küçük olan üreteç ise enerji tüketen eleman gibi davranır. Dolayısıyla ters bağlamada akım emk'sı büyük üretecin verdiği akım yönünde olur. Eğer e1=e2 ise devreden akım geçmez.

c. Paralel bağlama: Paralel bağlamada üreteçlerin aynı kutupları birbirine bağlanır. Paralel bağlanacak üreteçlerin emk'larının eşit olması gerekir. emk'ları eşit olmayan üreteçler birbirine bağlanırsa, emk'sı büyük olan üreteç diğerinin üzerinden boşalır. Bu nedenle paralel bağlanacak üreteçlerin özdeş olmasına dikkat edilir.

KİRCHHOFF KURALLARI: Ohm kanununu uygulayarak çözülmesi zor problemler Kirchhoff kurallarıyla kolayca çözülebilir.

1. Akım Kanunu(I. Kanun): Bir elektrik devresinin herhangi bir düğüm noktasına gelen akımların toplamı bu düğüm noktalarını terk eden akımların toplamına eşittir.
2. Gerilim Kanunu (II. Kanun): Bir elektrik devresinin herhangi bir kapalı kısmındaki emk ile (R•I)’lerin cebirsel toplamı sıfıra eşittir.

Bir iletkenin iki ucu arasına potansiyel farkı uygulandığında iletken üzerinde oluşan elektrik alan, serbest elektronları hareket ettirir. Hızlanan elektronlar iletkenin moleküllerine çarparak, kazandıkları kinetik enerjileri aktarırlar. Böylece iletken ısınır. Eğer iletkenin direnci büyük ise yüklerin kinetik enerjilerinin tamamına yakın bir kısmı ısıya dönüşür.

GÜÇ ve VERİM:
Güç(P): Birim zamanda yayılan veya harcanan enerjiye güç denir.
Verim: Bir devre elemanın verimi ondan alınan enerjinin, ona verilen enerjiye oranına eşittir. Enerjiler yerine güçler oranı da yazılabilir.

kaynak
ener - avatarı
ener
Ziyaretçi
5 Ekim 2010       Mesaj #2
ener - avatarı
Ziyaretçi
Bu mesaj 'en iyi cevap' seçilmiştir.
Alıntı
Misafir adlı kullanıcıdan alıntı

Başlıktaki konuyu araştırıyorum ama yalnızca elektrik değil diğer enerjileri de üretim teknikleri de dahil

Aşağıdaki linkleri inceleyiniz.

Sponsorlu Bağlantılar
Biyokütleden enerji yöntemleri

Uzay kaynaklı enerji yöntemleri


ELEKTRİK ENERJİSİNİN ÖZELLİKLERİ, ÜRETİLMESİ, TAŞINMASI VE DAĞITIMI

FİZİK –1 MADDE ÖZELLİKLERİ & ELEKTRİK

ELEKTRİK ENERJİSİNİN ÖZELLİKLERİ
- Elektrik enerjisinin diğer enerji türlerine dönüştürülmesi kolaydır.

- Diğer enerji türlerine göre çok uzaklara taşınması ve kullanılması son derece rahattır.

- Verimi yüksektir. Bir enerji, istenen başka bir enerji türüne dönüştürülürken, ekseriya istenmeyen başka enerji türleri de ortaya çıkar. Bunların arasında özellikle ısı enerjisinin büyük olması dikkati çeker. İstenmeyen bu ısı enerjisi, yararlanılamadığı için yitirilir ve verimi düşürür. İşte elektrik enerjisinin ısıdan başka bir enerjiye dönüştürülmesinde oluşan ısı enerjisi az olduğu için verimi yüksektir.

- Elektrik enerjisi sayısız bir çok parçaya ayrılarak kullanılabilir. Örneğin: Bir elektrik santralında kazanılan elektrik enerjisi, enerji taşıma hatlarıyla büyük kentlere götürülmekte ve orada sayısız konut ve iş yerlerine dağıtılarak kullanılmaktadır.

- Elektrik enerjisi bulunduğu yerin ekonomik, sosyal ve kültürel düzeylerini hızla yükseltir ve kendisine karşı duyulan gereksinmenin artmasına gene kendisi neden olur.

- Elektrik enerjisi toplumların ekonomik, sosyal ve kültürel yönlerden kalkınmasını sağlayan ve çağdaş uygarlığın en önemli araçlarından biri durumundadır.

- Son 50 yıl içinde baş döndürücü bir hızla ilerleyen teknolojideki gelişimler ve hatta bir ev kadınının eli altına bir makinanın verilmesi (örneğin çamaşır makinesi) elektrik enerjisi sayesinde olanaklı olmuştur.

Elektrik enerjisinin belirtilen bu ve bunlara benzer avantajları ve iyi yönleri yanısıra sakıncalı yönleri de vardır. Bunların başında elektrik enerjisinin depo edilemeyen bir enerji türü olması gelir. Nitekim elektrik enerjisi üretildiği anda kullanılmak zorunluluğundadır. Bundan dolayı üretim ile tüketim arasında devamlı bir dengenin bulunması gerekir. Ayrıca üretim sisteminde bir arıza ortaya çıktığında, bu sisteme bağlı sayısız abonede hizmetlerin durmasına ya da aksamasına neden olur. Bu nedenle, elektrik enerjisinin üretiminde sürekli bir devamlılığın sağlanması ve elde büyük ölçüde yedek sistemlerin bulundurulması zorunludur. Elektrik enerjisinin bir başka sakıncası da üretimine paralel olarak taşıma ve dağıtımı için özel düzenlere kesinlikle gereksinme duymasıdır. Oysaki, örneğin: bir dokuma fabrikası ürünlerini tüketiciye götürmek için özel yollara ve taşıtlara gereksinme duymaz. Bu görevi herkesin yararlandığı bir yoldan ve bir kamyon ile yapabilir. Buna karşın elektrik enerjisinin taşıma ve dağıtılması için projeye ayrıca yatırımların (örneğin: direkler, teller, izolatörler...) katılması zorunlu olmaktadır.

ELEKTRİK ENERJİSİNİN İLETİMİ (TAŞINMASI) VE DAĞITILMASI

Genellikle birbirinden uzak olan elektrik üretim santrallarıyla tüketim merkezleri arasındaki bağlantı, iletişim şebekesi ve enterkonnekte sistemlerle sağlanır. Elektrik depolanamadığından, üretildiğinde hemen kullanıcıya ulaştırılması gerekir. Bu da üretim ve tüketimin her an dengede tutulması demektir. Öte yandan tüketim miktarı bölgelere, mevsimlere ve hatta günün saatlerine göre büyük değişiklikler gösterebilir. Enterkonnekte sistemler, üretimi tüketim düzeyindeki değişimlere uyarlamayı sağlar. Elektriğin iletimiyse, gerilimin gücüne bağlı olarak taşıma iletim sığası değişen elektrik hatları aracılığıyla gerçekleştirilir. Gerilim arttığında iletim işleminde ciddi tasarruflar sağlanır: enerji kaybı gerilim düzeyiyle ters orantılı olduğu için enerjiden, hat miktarı azaldığı için yerden, şebekedeki bakım masrafları azaldığı için de harcamalardan tasarruf edilir. Mesela, 1000 MW’lık bir nükleer santralın ürettiği elektriği boşaltmak için, 380000V’luk bir hat kullanılır; oysa aynı işi görmek için 154000V’luk altı hat veya 66000V’luk 30 hat gerekir.
Enterkonnekte sistemler çok dağınık bölgelerin üretim imkanlarını birleştirerek, aynı malzeme güvenliği bakımından gerekli olan güç miktarının azalmasını sağlar. Arızalar meydana geldiğinde, yerinde değiştirilmesi gereken parçalar o an için elde bulunmayabilir. Bu durumda enterkonnekte sistem yardıma koşar; elektrik dağıtım istasyonlarında gerilimin akış yönü ayarlanarak anında ve en az harcamayla üretim ile tüketim arasındaki denge sağlanır. Şebekenin yönetimi için gerekli emirler ve bilgiler özel iletişim hatları, özel telsizler kullanılarak sağlanır.

Şebeke ve gerilimler
Gerilim ne kadar yüksek olursa, bir hattın iletebileceği elektrik miktarı da o kadar yüksek olur. Üretim santrallarından çıkan çok büyük miktarlardaki akımı iletebilen hatlar Türkiye’ de 380000V veya 154000V düzeyindedir. Uzak mesafeler arasına kurulan büyük iletişim şebekeleri ve enterkonnekte sistemler bu tip hatlardan oluşur. Bu şebekeler, bütün üretim santrallarını birbirine bağlar. Elektrik, gerilimi düşürüldükten sonra bölgesel şebekelere iletilir ve bu şebekeler yardımıyla ayrılarak dağıtım merkezlerine gönderilir. İletim şebekesi bölgesel, ulusal veya uluslar arası ölçekte de olsa, yönetim ve organizasyon nedenleriyle iletim işlemi Türkiye’ de 34500V veya bunun üzerindeki bir gerilim düzeyinde gerçekleştirilir. En çok kullanılan 380000V, 154000V, 66000V veya 24500V’tur. 34500V’un altındaki gerilimlere ortalama gerilimler olan 20000V ve 15000V veya alçak gerilim olan 380 veya 220V’luk “dağıtım gerilimleri” denir. Petrokimya, metalürji (özellikle alüminyum), demir-çelik fabrikaları ve elektrikli ulaşım hatları (tren, tramvay) çok büyük tüketicidir. Orta gerilim şebekeleri orta ve küçük sanayi işletmeleri ile büyük mağazalar veya yöresel yönetimler, hastaneler, okullar gibi merkezleri besler. Son olarak, milyonlarca yerel kullanıcı, alçak gerilimli elektrik akımıyla beslenir.

Elektrik Dağıtım Merkezleri ve Dağıtım Bağlantıları
Elektrik üretim merkezleriyle tüketicileri arasındaki bağlantı, elektrik iletim şebekesiyle anında sağlanır. Elektriğin dağıtımı, üretim ve iletim merkezlerindeki karmaşık bir programlama sistemiyle gerçekleştirilir. Dağıtım Türkiye Elektrik Kurumu (TEK) tarafından hazırlanarak uygulanmakta olan bir plana göre Türkiye çapında yapılır. Bu amaçla haberleşme ve telekomünikasyon araçlarından, otomasyondan ve önceden hazırlanan istatistik verilerine dayalı öngörülerden yararlanılır. Bu öngörülerde, ele alınan günün birkaç yıl öncesine kadar şebeke ve tüketim durumu dikkate alınır. Eskiden yılda bir kere yapılan tahminler, zamanla haftalık, günlük hale gelmiş ve tüketimin daha da yakından izlenmesi imkanı sağlanmıştır. Dağıtım ve iletimde meteorolojik koşullar da çok önemlidir; kapalı bir hava veya güneşli bir hava büyük sıcaklık farklılıklarına yol açar ve bu da milyonlarca konutun ısıtma ve aydınlatılmasında rol oynar. Elektrik akımının iletimi ve dağıtımı şebekeye bağlı dağıtım merkezlerince (transformatör istasyonları) sırayla yapılır.
Şebeke dağıtım merkezlerinin iki ayrı işlevi vardır: hem hatların birbirine bağlanmasını sağlar (enterkoneksiyon), hem de dönüştürme işlevi üstlenir (transformatör). Transformatör istasyonları transformatörler (dönüştürücü), disjonktörler ve ayırıcılarla donanmıştır. Transformatörler, duruma göre elektrik akımının gerilimini yükseltir veya alçaltır; dolayısıyla, iletim ve dağıtıma en uygun gerilimi seçerek elektriğin taşınmasında büyük önem taşır. Disjonktörler gerilim hattında herhangi bir aksaklık olduğunda akımı otomatik olarak kesmeye yarar. Hattın şebekeden ayrılması gerektiğinde devreye sokulabilir. Ayırıcılar da aynı rolü üstlenir, ama hatta akım olmadığı zaman çalışır ve hattı şebekeden tamamen ayırmakta kullanılır. Bir dağıtım merkezinin birçok farklı öğesi çoğunlukla açıktadır; bazı kentlerde bir dizi öğe yeraltında veya bina içlerinde olabilir. Bunlar basınçlı gaz zarfı içinde tutulur. Atmosferle pek temas etmediğinden, bundan kaynaklanan kirlenmelere uğramaz. Merkezler biraz uzaktaki bir kumanda istasyonundan yönetilir.

Elektriğin Ülke Çapında Dağıtımı
Türkiye’de elektrik dağıtımından genelde Türkiye Elektrik Kurumu (TEK) sorumludur; bazı bölgelerde bu işi özel şirketler üstlenmiştir. Dağıtım kuruluşu tüketim ihtiyacına göre şebekeler kurmak, bunları yönetmek ve yenilemek, tüketicileri şebekeye bağlayan bağlantıları yapmak, dağıtılan elektriğin sürekliliğini sağlamak ve miktarını sabit kılmakla yükümlüdür. İletim sistemi aracılığıyla yüksek gerilimde taşınan elektrik, alçak gerilime düşürülerek bir dağıtım merkezine, yani transformatör istasyonuna ulaştırılır. Kırsal bölgelerde bu şebekeler açıktadır; yerleşim bölgelerindeyse çoğunlukla yeraltına döşenmiştir.
Orta gerilim/alçak gerilim merkezlerinin bağlayıcı elemanı, farklı gerilimdeki iki şebekeyi birbirine bağlayan ve kısaca trafo denen transformatördür. Alçak gerilimli dağıtım sistemi tüketicilere üç fazlı ve bir topraklı (nötr) elektrik sağlar; elektrik iki gerilim düzeyinden oluşur. Bunlardan giderek yaygınlaşanı fazlar arası 380V ve faz-toprak arası 220V gerilimidir. Fazlar arası 200V ve faz-nötr arası 127V olanı giderek azalmaktadır. En çok kullanılan sistemler üç fazlı 380V ve tek fazlı 220V’tur. Bu seçeneğe göre, bir alet 4 tele veya 2 tele bağlanır. Elektrik akımının frekansı bütün Avrupa’da ve Türkiye’de 50Hz, Amerika kıtasındaysa 60Hz’dir. Bir motor veya bir bilgisayar, aygıtın içinde kullanılan frekansa eşit frekanslı bir şebekeye bağlanmadıkça düzgün çalışmaz.

ELEKTRİK ENERJİSİNİN ÜRETİLMESİ
TERMİK SANTRALLAR
Termik santrallar, kömür, akaryakıt veya gaz gibi fosil yakıtların yakılması yoluyla elektrik üretir. Su santrallarda, ocağın kazan bölümünde dolanan su, çok sıcak buhar haline dönüşür ve bu buhar, elektrik akımı üreten alternatörlere bağlı türbinleri çalıştırır. İlk büyük petrol krizi sanayileşmiş Batılı ülkelerde bu tip termik santralların yapımını yavaşlattı. Ancak gene de bu tip santrallar, birçok ülkede enerji açığını kapatmakta görev üstlenmeye devam etmektedir.
Termik santralların ürettiği ısının bir bölümü çevreye atılır. Soğutma suyunun sağlandığı kıyı ve ırmak suları birkaç derece ısınır. Kömürün yanmasıyla oluşan küllerin bir bölümü bacaların elektrostatik filtrelerinden dışarı sızar. Ve nihayet, bütün fosil yakıtlar azot ve kükürt içerir ve bu maddeler yanma sonrasında oksitler halinde atmosfere karışır. Çevre uzmanlarına göre gaz atıklar, ormanlar için son derece zararlı olan asit yağmurlarının en önemli nedenidir.


Termik Santralın Çalışma Yöntemi
Elektrik enerjisine dönüştürülecek olan termik enerjiyi üretmek için, yakıt bir buhar kazanında yakılır. Buhar kazanı, bir ocak ile bir boru demetinden oluşur; boruların içinde dolanan su, burada ısıtılır ve buhar haline geldikten sonra türbinlere gönderilir. Eğer yakıt olarak kömür kullanılıyorsa, bu kömür önce öğütülüp toz haline getirilir; sonra sıcak havayla karıştırılır ve brülörle buhar kazanının yanma odasına püskürtülür. Eğer sıvı yakıt kullanılıyorsa, bu sıvı yakıt önce akışkanlığının artması için ısıtılır, sonra kullanılır.
600MW’lik bir santralda buhar 565 derecelik bir sıcaklığa ve 174 bar düzeyinde bir basınca çıkarılır. Yüksek basınçlı türbinlere yollanan buhar kısmen genleşerek türbin çarklarını döndürür. Bu ilk aşamadan geçen buhar, enerjisinin bir bölümünü korur. Aynı buhar, ayrı bir devre aracılığıyla yeniden kazana gönderilir ve tekrar ısıtılır; sonra 34 bar düzeyinde bir basınçla, orta basınçta çalışan türbine basılır. Düşük basınç bölümündeyse buhar tam olarak genleşir. Bu çevrimin sonunda basıncı 300 milibara düşen buhar kondansöre gönderilir.
Kondansör, buharın yeniden suya dönüştürüldüğü soğuk bir kaynaktır. Buhar burada, içinde soğutma suyunun dolandığı binlerce küçük çaplı boruya temas ederek tekrar suya dönüşür. Sonra pompalarla toplanır ve yeniden ısıtma çevrimine sokulur; bu amaç için türbinin farklı noktalarında ısıtılan buhardan yararlanılır. Böylece yeni çevrim başlamış olur: su tekrar buhar kazanına girer, burada ısıtılarak buharlaştırılır ve türbinlere doğru yollanır. Türbinlerin mekanik enerjiyse alternatör vasıtasıyla elektrik enerjisine dönüştürülür. Ve son olarak da bir transformatörde gerilimi yükseltilen elektik, genel iletim hatlarına verilir.

NÜKLEER GÜÇ SANTRALLARININ GENEL TANITIMI

Nükleer Güç Santralları ile Termik Santraller birbirleri ile benzer özellikler taşırlar. Her iki santral tipinde de elde edilen buharın ısıl enerjisi türbinde mekanik enerjiye ve mekanik enerji de dejeneratörlerde elektrik enerjisine dönüştürülerek elektrik üretilir. Bu santraller arasındaki temel fark buharın elde ediliş yöntemidir. Bütün nükleer reaktör tiplerinde bölünmeden açığa çıkan enerji buhar üretiminde kullanır ve bu buhar üretimi doğrudan reaktörün korunda ya da buhar üreteçlerinde yapılır. Bu nedenle nükleer reaktörlerdeki bölünme reaksiyonu termik santrallarda fosil yakıt yakmakla aynı işleve sahiptir. İlk olarak nükleer güç santrallerini tanıtmadan önce bölünme (fisyon) reaksiyonu mekanizmasını anlatmakta yarar vardır. Nükleer reaksiyonda açığa çıkan enerji, temelde U235 izotopunun ya da herhangi bir bölünmeye yatkın (fisil) izotopun (Pu239, U233) nötronla etkileşmesinden ötürü parçalanması olayı sonucunda açığa çıkan fazlalık bağlanma enerjisidir. Nötronla etkileşen U235 çekirdeği kararsız hale geçerek, kendisinden daha hafif iki çekirdeğe ayrılır ve bu esnada da ortalama olarak iki nötron açığa çıkarır. Bu reaksiyon sonucu açığa çıkan bölünme enerjisi yaklaşık 200 MV'dir. Bu enerji buhar üretimi için soğutucuya aktarılır ve açığa çıkan nötronlardan biri bölünmeye yatkın başka bir izotopu parçalayarak zincirleme reaksiyonuna sebep olur. Diğer nötron ise reaktör içindeki diğer malzemeler tarafından yutulur ya da sistemden kaçar. Nükleer reaktörler bu zincirleme bölünme reaksiyonunun kontrollü olarak yapıldığı sistemlerdir. Bölünme reaksiyonunun önemini anlamak için 1 kg U235 izotopunun yanması sonucu açığa çıkan enerjinin yaklaşık 1.3 milyon kg kömürünkine eşdeğer olduğunu belirtmek yeterli olacaktır.
Bölünme reaksiyonu sonucu açığa çıkan nötronların etkili bir şekilde kullanılabilmesi için bölünmeye yatkın izotoplarla etkileşme olasılıklarını arttırmak gerekir. Bu nedenle bölünme reaksiyonlarından açığa çıkan hızlı nötronlar moderatör adı verilen yavaşlatıcı malzemeler yardımı ile yavaşlatılarak bölünmeye yatkın malzemelerle etkileşim olasılıkları arttırılır. Diğer bir malzeme de yansıtıcı (reflector) dır. Bu malzeme korun etrafına yerleştirilerek nötronların sistemden dışarı kaçma olasılıklarını azaltmak için kullanılır. Moderatör malzemesi aynı zamanda yansıtıcılık işlevini de görebilir.
İlk kontrollü bölünme reaksiyonu 1942 yılında Amerika Birleşik Devletlerinde inşa edilen CPI Reaktöründe gerçekleştirilmiştir. Bu reaktörde yakıt malzemesi olarak doğal uranyum ve moderator olarak grafit kullanılmıştır. İlk nükleer reaktörde olduğu gibi nükleer reaktör tasarımcılarının reaktör yakıtı için seçimleri doğal uranyum (%0.71 U235, %99.27 U238) ya da %3, %4 oranında zenginleştirilmiş uranyumdur. Eğer yakıt doğal uranyum seçilirse moderator olarak grafit ya da ağır su kullanılmalıdır.
Günümüzde, elektrik üretimi için kullanılan santralların büyük bir bölümü Basınçlı Su Reaktörü (PWR), Kaynar Su Reaktörü (BWR), ve Basınçlı Ağır Su Reaktörüdür (PHWR). Bunlardan ilk ikisi, hafif su soğutmalı termal reaktör sınıfına girer, moderator ve reflektör malzemesi olarak da hafif su kullanılır. Üçüncü reaktör tipi ise dünyada ilk olarak Kanada'da elektrik üretimi için kurulan ve soğutucu olarak ağır su kullanan Basınçlı Ağır Su Reaktörüdür.

BASINÇLI SU REAKTÖRÜ (PWR)

Basınçlı su reaktörleri ticari olarak elektrik üretimi için ABD'de kullanılan ilk reaktör tipidir. Bu tür reaktörlerde korda üretilen enerji birincil devre soğutucu vasıtasıyla kordan çekilir. İkincil devrede buhar üreteçlerinden alınan buhar türbinlerinde genişletilerek jeneratörde elektrik üretilir. Birincil devre basıncı, soğutucu suyun kaynamasını engellemek için, 15-16 MPa civarındadır. Soğutucunun kora giriş sıcaklığı 290-300 C, çıkış sıcaklığı ise 320-330 C civarındadır. Reaktör korundan çıkan soğutucu türbinlerde kullanılan buharın üretimi için buhar üreteçlerine gönderilir. Reaktörlerin birincil soğutucu devreleri iki, üç ya da dört tane benzer döngüden oluşur. Her bir döngüde bir buhar üretici, bir reaktör soğutucu pompası ve bağlantı boruları bulunur. Ayrıca reaktör basıncını kontrol edebilmek için bir basınçlayıcı bu döngülerden biri üzerinde bulunur.
Yakıt içinde fisyondan açığa çıkan nötronlar soğutucuda yavaşlatılarak zincirleme fisyon reaksiyonunu sağlarlar. Aynı anda açığa çıkan kinetik enerjinin büyük bir kısmı yakıt içinde ısıl enerjiye dönüşür ve bu enerji ısı iletimi ile soğutucuya aktarılır, bir kısmı ise hızlı nötronlar tarafından moderasyon anında moderator vazifesi de gören soğutucuya aktarılmıştır.
Reaktör koru dayanıklı bir çelikten yapılmış silindirik bir basınç kabı içerisinde yerleştirilmiştir. Basınç kabı bu tip reaktörlerin ömrünü kısıtlayan en önemli bileşendir.
Hemen hemen bütün reaktör tiplerinde reaktör basınç kabı ve soğutucu sistemleri koruma kabı adı verilen çelik bir kabuğun içindedir. Bu çelik kabuk betondan yapılmış ikinci bir koruyucu yapının içerisinde yer alır. Bu sistem dış etkilerden reaktör sistemini korumak ya da reaktörden bir kazadan dolayı açığa çıkabilecek radyasyonun çevreye sızmasını önlemek için tasarlanmıştır.

KAYNAR SU REAKTÖRÜ (BWR)

Kaynar su reaktörü dünyada basınçlı su reaktöründen sonra en yaygın olarak kullanılan reaktör tipidir. Kaynar su reaktörleri (BWR) birçok yönden PWR reaktörüne benzemekle birlikte, temel fark reaktör koru içinde kaynama olayına izin verilmesidir. BWR tipi reaktörlerin diğer hafif sulu reaktörlere göre üstünlüğü reaktör koru içinde doğrudan elde edilen buharın türbinlere gönderilmesidir. Bu nedenden dolayı BWR reaktörleri doğrudan çevrim ile çalışır. Basıncın PWR tipi reaktörlere göre daha düşük olması nedeniyle (7 MPa) basınç kabı et kalınlığı daha düşüktür.

BASINÇLI AĞIR SU REAKTÖRÜ (PHWR)

Basınçlı Ağır Su Reaktörleri, Basınçlı Su Reaktörleri ile benzer özellikler taşırlar. Ağır su reaktörü olarak adlandırılmalarının nedeni moderator ve soğutucu için ağır su (D20) kullanmalarıdır. Bu tür reaktörlerin en yaygın olarak kullanıldığı ülke Kanada'dır. Kanadalılar son 40 yılda CANDU (CANada Deuterium Uranium) adını verdikleri Kanada reaktörünü tasarlayıp geliştirerek Basınçlı Ağır Su Reaktörü teknolojisinde lider olmuştur.
CANDU reaktörlerinde yakıt olarak doğal uranyum kullanıldığı için zenginleştirme tesislerine ihtiyaç yoktur. Düşük basınçta moderator, ağır su (D20) ve yatay silindir şeklinde bir reaktör kabı vardır. Reaktör kabının içinde yatay şekilde geçen 380 adet yakıt kanalı bulunur. Yakıt kanalları doğal uranyum yakıt ve ağır su soğutucusundan oluşur. Yakıt kanalındaki yakıt elemanları basınç tüpü içindedir.

HİDROELEKTRİK ENERJİ

M.Ö. 3000-2000 yıllarından itibaren Mezopotamya ve Çin 'de, Mısır ve Anadolu 'da suyun potansiyel ve kinetik enerjisinden faydalanılmıştır. Buhar makinasının icadına kadar bir cismi hareket ettirmek için kuvvet kaynağı olarak sadece su ve rüzgardan yararlanılıyordu. Rüzgarın süreksiz olması nedeniyle daha çok su kullanılmıştır.
Suyun Potansiyel ve kinetik enerjisinden faydalanılarak çeşitli tipte hidroelektrik tesisler yapılabilir. Çöllerde ve sıcak ülkelerde suyun buharlaşmasından faydalanmak suretiyle yapılan depresyon tesisleri, gel-git olayından ve dalga enerjisinden faydalanılarak yapılanlarla akarsular üzerinde kurulan sistemler buna örnek verilebilir.

Depresyon Tesisleri:
Denizden alçakta olan çöllerde veya denize kıyısı olan çok sıcak bölgelerde, yüzeyden suyun fazla buharlaşmasından yararlanmak amacıyla hidroelektrik tesisler yapılmaktadır. Çok sıcak bölgelerdeki uygun bir koy bir duvar aracılığıyla denizden ayrılır. Denizden ayrılan kısımda serbest su yüzeyinden buharlaşma sonucunda, buranın su seviyesi alçalır. İşte buharlaşan bu su miktarına eşit debi denizden alınarak hidroelektrik tesisi kurulur. Çöllerde yapılan tesislerde ise çölün denizden alçak olan kesimlerinde bir tünel veya bir kanal ile deniz suyu taşınır. Çukur bölgede yapılan tesiste ise enerji üretilir. Çukur bölgede oluşan göl kesimden bir yıl içinde buharlaşan su miktarına eşit olan debi, denizden alındığı takdirde zaman içinde gölde kararlı bir seviye oluşur. Çukur bölgede oluşan bu gölün hacminin deniz suyundaki tuzu depolayacak kadar büyük olması gerekir.
Kattara Hidroelektrik projesi. Kattara Çölü Kahire'nin 300 km batısında ve Akdeniz seviyesinden 135 m alçaktadır. 80 km uzunluğundaki bir tünel vasıtasıyla 600 m³/sn lik deniz suyu bu çukura aktarılacaktır. Oluşacak göl ham biriken tuzları hem de 60 m yüksekliğindeki 12000 m² 'lik bir alana sahip gölün su yüzeyinde büyük miktarda buharlaşma gerçekleşecektir. Yılda yaklaşık 2 m kalınlığında su buharlaşırsa, yılda toplam 24 milyar m³ su buharlaşacaktır. Bu da ~761 m³/s debiye karşılık gelir. Fırat nehrinin debisi ise 600 m³/s 'dır. Tesisin kur gücü 1200MW'dır.

Gel-Git Hidroelektrik Tesisleri:
Açık denizlerde meydana gelen gel-git olaylarından yararlanılarak elektrik enerjisi elde edilmesi için kurulan tesislerdir. Yükselen deniz suyu bir nehrin ağzında yapılan hazneye veya bir koya doldurulur. Boşalırken, dolarken veya her iki yönde çalışan tek ve çift hazneli gelgit tesisleri yapılmıştır.24 saat içinde, 20 dk süre ile deniz iki defa kabarır ve alçalır. Dolarken ve boşalırken aynı türbin çalışabilir. İki taraf arası seviye farkı 3 m olunca türbinler durur. Daha sonra tekrar kapaklar açılarak deniz suyu doldurulur ve boşaltılır. Bu tesislerin en büyüğü Fransa'da Atlantik sahilindeki Rance Tesisidir. Bu santralde her biri 10 MW gücünde 24 türbin-jeneratör grubu vardır. Tesisi çalıştırmakta sadece bir kişi görevli çünkü tesis tam otomatik olarak çalışmaktadır. Tesis 240 MW gücündedir.

Dalga Enerjisinden faydalanılarak Enerji Üreten Tesisler:
Bu tesisler henüz uygulama safhasına girmemiştir. Dalga enerjisinin de süreksiz olması bu tür tesislerin faaliyet sürelerini kısıtlamaktadır. İstanbul Boğazındaki akıntıdan enerji elde edilmesi ise mümkün değildir. Çünkü tesisin masrafları üretimle elde edilecek gelirin çok çok üstündedir. Ayrıca tesisin kurulabilmesi için Boğaz deniz trafiğine kapatılacaktır ve üretilecek enerji ise yalnızca 5 MW gücündedir. Yani konvansiyonel olmayan tesisler ancak belirli yerlerde ve belirli koşullar altında yapılabilmektedir.

Akarsular üzerinde kurulan Hidroelektrik Tesisleri:
Bu tür santraller iki ana bölüme ayrılır. Barajsız hidroelektrik santralleri, nehir santralleri veya çevirmeli hidroelektrik tesisleri.

Barajsız Hidroelektrik Tesisleri:
Akarsu, bağlama adı verilen bir sistem aracılığıyla kabartılarak su alınır. Alınan su bir tünel veya kanal yardımıyla az bir eğim oluşturacak şekilde, aynı veya başka bir akarsu yatağına bırakılır. Böylece seviye farkından yararlanılarak elektrik enerjisi üretimi sağlanır. Akarsu üzerine yapılan bağlama yardımı ile kabartılan suyun, seviye farkından yararlanarak kanalsız veya tünelsiz tesisler yapılmaktadır.

Barajlı Hidroelektrik Tesisler:
Akarsu üzerinde bir baraj yardımı ile mevsimlik, yıllık veya çok yıllık hazneler. Elektrik enerjisi üretimi ihtiyaca göre ayarlanarak, pik saatlerindeki ihtiyaç kolayca karşılanır. Yedek türbinler yardımı ile yağışlı yıllarda güvenilir enerjinin üstünde ikincil enerji üretilebilir ve haznenin büyüklüğüne göre kurak mevsimlerde enerji ihtiyacı karşılanabilir. Bunlara karşın barajların önemli olumsuzlukları da göz ardı edilmemelidir.

JEOTERMAL ENERJİ
Enerji Kaynakları:
Jeotermal enerji, Dünya’nın ısısından elde edilen enerjidir. Jeotermal sözcüğü “yer” ve “ısı” anlamındaki Yunanca iki sözcükten üretilmiştir. Bilim adamları, jeotermal ısının nereden kaynaklandığı, yeryüzüne çıkan buharın nasıl oluştuğu konusunda henüz tam bir görüş birliğine varamamışlardır. Büyük bir olasılıkla bu ısının kaynağı , Dünya’nın derinliklerindeki “magma” denilen erimiş kayaç kütlesidir. Yüzeye püsküren buharın da, yüzeyden derinlere sızan yağmur sularının, bu kızgın magma bölgesinde ısınıp buharlaşması sonucunda oluştuğu sanılmaktadır. Bu ısıdan, İzlanda ve Japonya’da olduğu gibi, evlerin, hamamların ve seraların ısıtılmasında yararlanılabilir. Elektrik enerjisi üretiminde de, üreteçlere bağlı buhar türbinlerinin çalıştırılmasıyla jeotermal enerji kullanılabilir. İlk jeotermal enerji santralı 1931’de İtalya’daki Larderello’da kuruldu. Bugün Larderello’da toplam gücü 351 megawatt olan ve yaklaşık 600 bin nüfuslu bir kenti beslemeye yeterli elektrik üreten bir grup jeotermal enerji santralı bulunmaktadır. Ucuz enerji çağından pahalı enerji çağına girilirken ömrü son derece kısıtlı olan konvansiyonel enerji kaynaklarının, bir gün tükenebileceği düşünülmeye başlanmıştır. Bu nedenle, hızla artan nüfusun ve teknolojik yeniliklere bağlı olarak gelişen endüstrinin enerji gereksinimi karşısında, konvansiyonel enerji kaynaklarının yerine geçebilecek, yeni ve yenilenebilir doğal kaynakların araştırılması bulunması ve bunlardan yararlanılması konusunda büyük bir arayış içine girilmiştir.
Dünyadaki enerji kaynakları fosil kaynaklar (kömür, petrol, doğal gaz, turba, petrollü, kaynaklar, vb.) yenilenebilir kaynaklar (hidrolik, biyomas, jeotermal, jeotermal gradyan, rüzgar, gelgit, dalga, vb.) olmak üzere iki bölüme ayrılabilir. Bunlardan yenilenebilir kaynaklar grubuna giren Jeotermal Enerji, önemli bir

yer tutmaktadır.
Yerkabuğu içerisinde hazne kayalarda bulunan, basınç altında aşırı derecede ısınmış suların enerjisidir. Ekonomik önemdeki jeotermal enerji birikimi, 40°C-380°C arasında olup, 3000 m 'ye kadar olan derinliklerde geçirimsiz kayalar altında yer alan, geçirimli hazne kayalar içinde bulunmaktadır. Şimdiye kadar üç çeşit jeotermal sistemin varlığı saptanmıştır. Sıcak kuru kaya sistemi, sıcak su sistemi, kuru bahar sistemi.

Sıcak Su Sistemi:
Yeryüzünde sıcak su esaslı sistemler Buhar esaslı sistemlerden yirmi kat daha fazla bulunmaktadır. Sıcak su sisteminde, derindeki hazne kaya içerisinde, basınç altında, yüksek sıcaklıkta, erimiş kimyasal madde bakımından çok zengin, farklı kimyasal özelliklerde sular bulunmaktadır. Bu tür sistemlerden sondajlarla yeryüzüne çıkarılan sıcak su+buhar karışımından elde edilen buhardan, elektrik enerjisi üretilmekte, buharı alınmış sıcak su ise atılmaktadır.

Kuru Bahar Sistemi:
Buhar esaslı sistemler , sıcak su esaslı sistemlerden farklı olarak, çok fazla ısınmış, nem miktarı az, sıcaklığı yüksek buhar üretirler. Bu tür buhar, bir enerji kaynağı olarak doğrudan jeotermal santrallere gönderilerek elektrik enerjisine dönüştürülmektedir. Bir bakıma bunlar yerkabuğu üzerinde oluşmuş, birer doğal nükleer reaktör olarak kabul edilir.

Sıcak kuru kaya sistemleri:
Yerküremizde özellikle genç, aktif volkanik kuşaklarda, jeotermal gradyanın çok yüksek olduğu bölgelerde, sıcak su içermeyen yüksek sıcaklığa sahip kızgın, kuru kayalar bulunmaktadır. Bu tür sistemlere soğuk su basılarak sıcak su+ buhar karışımı alınmakta ve bu, bir enerji kaynağı olarak kullanılmaktadır.

RÜZGAR ENERJİSİ
İnsanlar binlerce yıldır rüzgardan bir enerji kaynağı olarak yararlanmaktadır. Buna ilişkin olarak ilk akla gelen yelkenli teknedir. Rüzgar enerjisini kullanabilmenin üç yolu vardır: Yelkenli teknelerde olduğu gibi doğrudan hareketi sağlamak; yel değirmenlerinde olduğu gibi herhangi bir makinenin kanatlarını döndürmek; elektrik üreteçlerine bağlı türbinleri çalıştırmak. Rüzgar enerjisi, dönüşüme uğramış güneş enerjisidir. Güneş enerjisinin kayaları, denizleri ve atmosferi her yerde özdeş ısıtmaması nedeniyle oluşan sıcaklık ve basınç farkları rüzgarı oluşturmaktadır. Rüzgar bit merkez çevresinde dolandıklarında, santrifüj kuvveti etkisinde kaldıkları gibi, yeryüzü ve hava arasındaki sürtünme kuvvetinden de etkilenirler. Kutuplar ve ekvator arasındaki sürekli hava akımlarına göre, enerji üretimi açısından denizler, karalar, dağlar ve vadiler arasındaki yerel rüzgarlar daha önemlidir.
Rüzgar enerjisi bol ve serbest halde bulunan güvenilir ve sürekli bir enerji kaynağıdır. Havanın öz kütlesi az olduğundan, rüzgardan sağlanacak enerjinin miktarı hızına bağlıdır. Rüzgarın hızı yükseklikle, gücü ise, hızının küpü ile orantılı olarak artar. Sağlayacağı enerji, gücüne ve estiği süreye bağlıdır.
1982-92 döneminde Kaliforniya' da yaklaşık 150.000 rüzgar türbini kurulmuştur. Buralardan yaklaşık 3.000.000.000 kWh elektrik üretilmiş ve Kaliforniya' nın elektrik tüketiminin %1,2 buralardan sağlanmıştır. Dünyanın en büyük rüzgar çiftliği ABD' de kurulan Altamount Pass rüzgar tesisidir. 8160 Hektar alan kaplayan bu çiftlik 3500 adet 100 kW'lık ve 40 adet 300-450 kW'lık türbin bulunmaktadır.

Rüzgar Teknolojisi:
Rüzgar enerjisi Betz teoremine göre max. %59,3 etkinlikle mekanik enerjiye çevrilebilir. Bu çevirim, rüzgar türbini tarafından yapılır. Böyle bir türbin; çevredeki engellerin rüzgarı kesemeyecek kadar yükseklikte bir kule üzerinde bulunması gerekir. ayrıca yüksek verim için geniş düzlükler bu enerji kaynakları için daha elverişlidir. Türbinin rüzgara göre yönlendirilmesi, rotor ekseni ile rüzgar doğrultusu arasındaki yav açısını kontrol eden mekanizmayla sağlanır. Elektrik üretimini sağlayan bu makineye rüzgar jeneratörü adı verilir.
2000 yılı için kurulu kapasite hedefi ABD' de 2800 MW, Avrupa'da 6340 MW, Asya'da 3817 MW civarında olması tahmin edilmektedir. Avrupa'da en büyük kapasite Almanya'da 2000 MW olacak ve onu 1000 MW'la Danimarka takip edecektir. Gelecek 10 yıl sonunda ABD elektrik üretiminin %20 sini rüzgar enerjisinden sağlamayı hedeflemiştir. Avrupa Birliği ise 2005 yılında elektrik enerjisinin %20 sini yenilenebilir. kaynaklardan sağlamayı hedeflemektedir. Bu projede ise rüzgar enerjisine %2' lik bir pay ayrılmıştır. Elektrik; çağdaş yaşamın en yaygın enerji kaynaklarından birisidir. Kullanıldığı alanlar neredeyse sayılamayacak kadar çoktur. Evlerimizi aydınlatmak, elektrikli süpürge, çamaşır makinesi gibi ev aletlerini çalıştırmak, hatta yemek pişirmek ve odalarımızı ısıtmak için elektrik enerjisinden yararlanırız. Fabrika ve işyerlerindeki makineler ile bilgisayarlar ve telefon, radyo, televizyon yayınları gibi iletişim sistemleri için gerekli olan enerji gene elektrikten sağlanır. Motorlu taşıtlardaki ateşleme sistemini ve marş motorunu besleyen enerji kaynağı da akümülatörlerde depolanmış olan elektriktir. Öte yandan elektrikli trenler ve otomobiller gibi bazı taşıtlar tümüyle elektrik enerjisiyle yol alır. Kısacası elektrik insanların en vazgeçilmez ihtiyacı haline gelmiştir ve yaşantımızda son derece önemli bir rol oynar.

TANIMLAR VE KURAMLAR

VOLTMETRE: Herhangi bir devre elemanının uçları arasındaki potansiyel farkını ölçmek için kullanılır. İç direnci çok büyük olup devreye paralel bağlanır. Dolayısıyla üreteçten çekilen akımı etkilemez.

ÜRETEÇLER: Doğru akım sağlayan düzeneklere üreteç denir. Bir üretecin iç direnci üretece seri bağlı bir dış direnç gibi düşünülebilir.

Üreteçlerin Bağlanması:
a. Seri bağlama: Seri bağlamada üreteçlerden birinin negatif(-) kutbu diğerinin pozitif kutbuna bağlanır. Eşdeğer emk üreteçlerin emk’ları toplamına eşit olur.

b. Ters bağlama: Seri bağlamada üreteçlerden biri ters bağlanırsa, emk'sı büyük olan üreteç enerji üreten, küçük olan üreteç ise enerji tüketen eleman gibi davranır. Dolayısıyla ters bağlamada akım emk'sı büyük üretecin verdiği akım yönünde olur. Eğer e1=e2 ise devreden akım geçmez.

c. Paralel bağlama: Paralel bağlamada üreteçlerin aynı kutupları birbirine bağlanır. Paralel bağlanacak üreteçlerin emk'larının eşit olması gerekir. emk'ları eşit olmayan üreteçler birbirine bağlanırsa, emk'sı büyük olan üreteç diğerinin üzerinden boşalır. Bu nedenle paralel bağlanacak üreteçlerin özdeş olmasına dikkat edilir.

KİRCHHOFF KURALLARI: Ohm kanununu uygulayarak çözülmesi zor problemler Kirchhoff kurallarıyla kolayca çözülebilir.

1. Akım Kanunu(I. Kanun): Bir elektrik devresinin herhangi bir düğüm noktasına gelen akımların toplamı bu düğüm noktalarını terk eden akımların toplamına eşittir.
2. Gerilim Kanunu (II. Kanun): Bir elektrik devresinin herhangi bir kapalı kısmındaki emk ile (R•I)’lerin cebirsel toplamı sıfıra eşittir.

Bir iletkenin iki ucu arasına potansiyel farkı uygulandığında iletken üzerinde oluşan elektrik alan, serbest elektronları hareket ettirir. Hızlanan elektronlar iletkenin moleküllerine çarparak, kazandıkları kinetik enerjileri aktarırlar. Böylece iletken ısınır. Eğer iletkenin direnci büyük ise yüklerin kinetik enerjilerinin tamamına yakın bir kısmı ısıya dönüşür.

GÜÇ ve VERİM:
GüçMsn Photo: Birim zamanda yayılan veya harcanan enerjiye güç denir.
Verim: Bir devre elemanın verimi ondan alınan enerjinin, ona verilen enerjiye oranına eşittir. Enerjiler yerine güçler oranı da yazılabilir.

kaynak
Misafir - avatarı
Misafir
Ziyaretçi
22 Aralık 2010       Mesaj #3
Misafir - avatarı
Ziyaretçi
ya bana elektrik üretimi nerden yapılır lazım nolur yardım edddddinnnn

Benzer Konular

3 Aralık 2016 / perlina X-Sözlük
20 Nisan 2011 / Misafir Soru-Cevap
25 Aralık 2013 / Misafir Cevaplanmış
11 Kasım 2010 / Misafir Ziraat
25 Şubat 2013 / Misafir 2011 Soru-Cevap