Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Sohbet (Flash Chat) Forumda Ara

Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz?

Bu konu Soru-Cevap forumunda Misafir tarafından 15 Aralık 2010 (21:46) tarihinde açılmıştır.FacebookFacebook'ta Paylaş
115232 kez görüntülenmiş, 35 cevap yazılmış ve son mesaj 7 Ocak 2014 (21:01) tarihinde gönderilmiştir.
  • 5 üzerinden 2.95  |  Oy Veren: 22      
Cevap Yaz Yeni Konu Aç
Bu konuyu arkadaşlarınızla paylaşın:    « Önceki Konu | Sonraki Konu »      Yazdırılabilir Sürümü GösterYazdırılabilir Sürümü Göster    AramaBu Konuda Ara  
Eski 15 Aralık 2010, 21:46

Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz?

#1 (link)
Misafir
Ziyaretçi
Misafir - avatarı
eski uygarlıkların kullandıkları sayı sistemlerinin araştırılması ve yaşamda sayılar olmadan ne gibi zorluklar olacağını belirtiniz günümüzde kullandığımız onluk sayı sistemini kim buldu kimler tarafından geliştiği nerede kullanıldığı
En iyi cevap GüNeSss tarafından gönderildi

Eski Uygarlıkların Kullandıkları Sayı Birimleri

Sayı ve biçime ilişkin kavramlarla tanışmamız Yontma Taş Devri’ne kadar uzanır .Yüzbinlerce yıl boyunca insanlar hayvanların yaşadığı koşullardan pek farklı olmayan bir biçimde mağaralarda yaşadılar .Enerjilerinin çoğunu nerede yiyecek bulurlarsa onu toplamaya harcıyorlardı .Avlanmak ve balık tutmak için silahları birbirleriyle anlaşmak için konuşma dilini geliştirdiler .Yontma Taş Devri’nin sonlarına doğru da yaratıcı sanatlarla heykelcikler ve resimler yaparak yaşamlarını renklendirdiler .Fransa ve İspanya’daki yaklaşık 15.000 yıl öncesinin mağara duvar resimlerininayinsel bir anlamı olabilir ama bunun ötesinde de üstün bir biçim anlayışı gösteriyorlardı .

Maden Devrinde ise bunun aksine ticaret öylesine gelişmişti ki yüzlerce mil uzaklıktaki köyler arasındaki ilişkilerin izleri fark edilebiliyordu .Önce bakırın daha sonra da tuncun eritilmesiyle bu ****llerden araçlar ve silahlar yapıldı .Bu da ticaretin ve yeni dillerin daha da gelişmesine yol açtı .Bu dillerdeki nesnelerin çoğunlukla somut ; yani elle tutulur ve gözle görülür nesneleri belirtmesine ve az sayıda olmasına karşın bazı sayısal terimler ortaya çıktı .Benim düşüncelerime göre matematiğin ilk kez ortaya çıktığı çağ Maden Çağıdır .

Ünlü bir matematikçi olan Adam Smith’in “insan aklının ürünü en soyut düşünceler” olarak tanımladığı sayısal terimlerin kullanılmaya başlanması çok yavaş oldu .Bunlar ilk ortaya çıktıklarında bir cismin sayısını değil niteliğini gösteriyordu .Örneğin ; “bir insan” değil sadece “insan” kavramını gösteriyordu .Sayısal kavramların bu niteliksel kökenlerinin izleri hala Yunanca ve Keltçe gibi bazı dillerdeki ikili terimlerde görülebilir .Sayı kavramı geliştikçe toplama yoluyla
daha büyük sayılar oluşturuldu :2 ile 1 toplanarak 3 2 ile 2 toplanarak 4 2 ile 3 toplanarak 5 bulundu .

İşte bazı Avustralya kabilelerinden örnek :

Murray Nehri : 1 =enea 2 =petcheval 3 =petcheval-enea 4 =petcheval - petcheval

Kamilaraoi : 1 =ma 2 =bulan 3 =guliba 4 =bulan bulan 5 =bulan guliba 6 =guliba guliba

Zanaatlerin ve ticaretin gelişmesi sayı kavramının netleşmesine yardım etti .Sayılar ticaret yaparken doğal bir yöntem olan bir ya da iki elin parmakları kullanılarak daha büyük birimlerin içinde gösterildi .Buna örnek olarak şimdiki okullarda okuyan küçük sınıflarda ki çocukların sayma yöntemini verebilirim .Bu olayın sonucunda önce 5 sonra 10 tabanlı sayı sistemleri oluşturulup bunlar toplama ve bazen çıkarma ile tamamlandı .Böylece 12 10 + 2 olarak ya da 9 10-1 olarak algılandı .Bazen de taban olarak el ve ayak parmaklarının toplam sayısı olan 20 kullanıldı .Yapılan araştırmalara göre Amerikan yerlilerinin kullandığı 307 sayı siteminden 146’sı onluk 106’sı onluk onikilik ve yirmilik sayı sistemlerinin karışımıydı .Çoğu kişi tarafından yamyam olarak bilinen Amerikan yerlilerinin bu kadar çok sayı sisteminin olması önce bana biraz garip geldi .Fakat sonra onların da en az bizim kadar zeki olduklarını anladım .Yirmili sayı sisteminin en tipik biçmi Meksika’da Mayalar ve Avrupa’da Keltler tarafından kullanıldı .

Sayılar kümelere ayrılarak tahtanın üstüne çentik ipin üstüne düğüm atılarak ya da deniz kabuklarının beşli yığınlar biçiminde düzenlenmesiyle sayısal kayıtlar tutuldu .Bu yöntemler eski zaman hancılarının çetele tutma yöntemlerine benziyordu .Böyle yöntemlerden 5 10 20 gibi özel simgelere geçilmesi çok kolay oldu .Benzer simgeler uygarlığın doğuşu da denen yazılı tarihin başlangıcından beri kullanılmıştır .



Yontama Taş Devri’ne kadar uzanan en eski çetele çubuğu 1937’de Vestonica’da bulunmuştur .Bu ; genç bir kurdun 7 inç uzunluğundaki ön kol kemiğiydi ve üzerinde ilk 25’i beşli gruplar halinde düzenlenmiş 55 çentik bulunmaktaydı .Dizinin sonunda önceki çentiklerden iki kat uzun bir çentik vardı .Yeni dizinin başındaki çentik yine 2 kat uzundu ve bunu 30 çentikten oluşan bir dizi izliyordu .

Böylece sık sık söylenen “eski zamanlarda sayma parmaklara dayalıydı .” görüşü geçerliliğini kaybetmiş oldu .Yazı olmamasına rağmen Yontma Taş Devrin’deki insanların çetele çubuklarını duymak ilginç gelebilir .Fakat gerçek .

Parmaklar kullanılarak sayı saymak yani 5’erli 10’arlı saymak ancak toplumsal gelişimin belirli bir aşamasında ortaya çıkar .Bu aşamadan sonra sayılar bir tabana göre ifade edildi ve bu da büyük sayıların ortaya çıkmasına yardım etti .Böylece ilkel bir aritmetik ortaya çıktı .14 bazen 10+4 bazen de 15-1 olarak gösteriliyordu .20’nin 10+10 değil de 2´10 olarak gösterilmesiyle çarpma başladı .Bölme 10’un “vücudun yarısı” olarak gösterilmesiyle başladı ama kesirlerin bilinçli bir şekilde oluşturulması hala çok enderdi .Kuzey Amerika’da kabilelerin ancak birkaçında böyle kesirler biliniyordu çoğu durumda bu ½’ydi .Bazen 1/3

ya da ¼’de kullanılıyordu .Bir başka ilginç durum çok büyük sayılara duyulan ilgidir .Bu belki de tümüyle insana ait bir tutku olan sürünün büyüklüğü ya da öldürülen düşmanların çokluğunu abartma isteğinin sonucudur .Bu eğilimin kalıntıları İncil’de ve diğer kutsal metinlerde de ortaya çıkar .



Tarih Öncesi Çağlarda Geometri
Cisimlerin uzunluklarını ve içindekileri ölçmek gerekince genelde insan vücudunun bölümleri kullanılarak ; parmak ayak karış gibi basit ölçüler kullanıldı .Arşın kulaç adları bize bu geleneği hatırlatır .Ev yaparken Hint köylüleri de Orta Avrupa’da kutup evi yapanlar da yapıları düz çizgiler boyunca ve yere göre dik açıyla yapmak için kurallar geliştirdiler .Örneğin ; “Düz sözcüğü “germek” sözcüğü ile ilgilidir ve iple yapılan işlemleri gösterir .”Doğru” ve “Keten kumaş” sözcükleri dokumacılık ile geometrinin başlangıcı arasındaki bağlantıyı gösterir .Dokumacılık ölçmeye ilişkin ilginin başlama yollarından biriydi .

Cilalı Taş Devri insanı geometrik desenlere büyük bir ilgi duyuyordu .Çömleklerin pişirilmesi ve boyanması sazların örülmesi sepet yapımı ve kumaş dokumacılığı daha sonra da ****llerin işlenmesi düzlemsel ve alansal ilişkilerin kavranmasını geliştirdi .Dans figürleri de bunda rol oynamış olmalı ki Cilalıtaş Devri’nde yapılan süslemelerde benzerlik ve simetri görülür ; eş şekiller kullanılırdı .Bazı tarih öncesi desenler de üçgensel sayılar bazılarında ise “kutsal” sayılar yer alıyordu .Pisagor matematiğinde önemli rol oynayan üçgensel sayıların oluşturulma çabaları yansımaktadır .

Bu tür desenler tarih boyunca yaygın olarak kullanılmıştır .Bunların çok güzel örneklerine Girit’teki Minos ve erken dönem Yunan vazolarında daha sonra Bizans ve Arap moziklerinde Pers ve Çin duvar halılarında rastlanır .Bu ilk desenlerin dinsel ya da büyüsel bir anlamı olabilir ama zamanla görsel çekicilikleri ön plana çıkmıştır .

Taş Devri dinlerinde doğa güçlerine egemen olma çabasının ilkel bir biçimini fark edebiliriz . Dinsel törenler büyü ile iç içeydi .Büyü öğesi de o zamanlar var olan sayı ve biçime ilişkin kavramlarda heykel müzik ve resimlerde içeriliyordu .347 gibi sihirli sayılar Pentalpha ve Swastika gibi sihirli biçimler vardı .Matematiğin toplumsal kökenleri modern zamanlarda silikleşmişse de insanlık tarihinin ilk dönemlerinde bu kökler açıkça görülebilmektedir ve bazı yazarlar matematiğin bu yönünün onun gelişiminde belirleyici olduğu görüşündedir .”Modern” sayı bilimi Cilalı hatta belki de Yontma Taş Devri’nin büyü törenlerinin mirasıdır .

Zaman Kavramı
En ilkel kabilelerde bile bir “zaman” kavramına rastlanır ve bunun sonucu olarak da Güneş Ay ve yıldızların hareketleriyle ilgili bazı bilgileri edinmişlerdi .Bu bilgiler çiftçilik ve ticaret geliştikçe daha bilimsel bir nitelik kazanmaya başladı .Bitkilerdeki değişimlerin Ay’daki değişimlerle ilişkilendirildiği Ay takviminin kullanılması insanlık tarihinin çok erken dönemlerine kadar uzanır .İlkel insanlar gündönümünü ya da şafakta yedi yıldızlı Süreyya burcunun yükselişini ilgiyle izliyordu .İlk uygarlıkları kuran insanların astronomi bilgilerinin kökeni tarih öncesi dönemlerden gelen bilgilere dayanıyordu .İlk insanlar takım yıldızlarından denizcilikte yararlandılar .Astronomiye ilişkin bu gözlemlerinin sonunda kürenin dairenin ve açısal yönlerin özellikleri hakkında bilgi edinildi .

Matematiğin başlangıcına ilişkin bu birkaç örnek bir bilimin tarihsel gelişiminin şimdi bu alandaki öğretimde geliştirdiğimiz aşamalarla çakışmayabileceğini göstermektedir .İnsanlarca bilinen en eski geometrik biçimler olan düğümlere ve desenlere ancak son yıllarda bilimsel bir ilgi gösterilmiştir .Öte yandan grafikle gösterim ya da istatistik gibi matematiğin temel dallarının başlangıcı modern zamanlardadır .Bir matematikçi olan A. Speiser bu konuda şöyle düşünmektedir :

“Matematiğe girişin doğasında var olan sıkıcılığın ön plana çıkma eğiliminin geç başlangıcının sonucu olduğu söylenebilir ; çünkü yaratıcı bir matematikçi ilgi çekici ve güzel problemlerle uğraşmayı yeğler .”



ESKİ UYGARLIKLARIN MATEMATİKLERİ
Doğu Matematiği

Doğu matematiği uygulamalı bilim kökenliydi .Takvimin hesaplanması tarımsal üretim ve bayındırlıkla ilgili işlerin örgütlenmesi vergilerin toplanması uygulamalı aritmetik ve ölçme sorunlarına öncelikle ağırlık verilmesini gerektirdi .Bununla birlikte yüzyıllar boyunca özel bir zanaat olarak gelişen bilim yalnızca uygulamaya yönelik değildi ; sırlar öğretilirken soyutlamaya yönelik eğilimler de ortaya çıktı .Aritmetiğin cebire dönüşmesi yalnızca daha pratik hesaplamalar sağladığı için olmadı ; bu aynı zamanda yazıcı okullarında öğretilen bir bilimin doğal bir gelişimiydi .Aynı nedenlerle ölçme ile ilgili bilgiler kuramsal geometrinin başlangıcını oluşturdu .

Mısır Matematiği
Mısır matematiğine ilişkin bilgilerimizin çoğu iki kaynağa dayanır .Bunlar 85 problemi içeren Rhind Papirüsü ve bundan belki de 200 yıl öncesine ait olan ve 25 problemi kapsayan Moscow Papürüsü’dür .Bu elyazmaları düzenlenirken içerdikleri problemler zaten eskiden beri biliniyordu ; ama yakın dönemden hatta Roma döneminden kalma az sayıdaki papirüsteki yöntemler de bundan farklı değildi .Kullandıkları matematik onlu sayı sistemine dayanıyordu ve 10’dan büyük her 10’lu birim için özel simgeler kullanılıyordu .Bu tür sistemleri Roma rakamlarından biliyoruz : MDCCCLXXVII = 1878 .Bu sistemi kullanan Mısırlılar çarpmayı ardışık toplamalara indirgeyen toplama ağırlıklı bir aritmetik geliştirdi .Örneğin bir sayıyı 13 ile çarpmak için onu önce 4 ve 8’le çarpıyorlardı daha sonra çıkan sonucu sayının kendisine ekliyorlardı .Bu işlemi yaparak inceleyelim :

Normal çarpma işlemi :3´13=39

Mısırlıların kullandığı yöntem :

3´4 =12

3´8 =24

24+12 =36

36+3 =39

Görüldüğü gibi sonuç aynı .Mısır matematiğinin en önemli yönü kesirlerle yapılan hesaplamalardır .Bütün kesirler payı bir olan birim kesirlerin toplamı olarak yazılırdı .

Bazı problemlerin teorik yanları ağır basıyordu .Örneğin 100 somun ekmeği 5 kişi arasında her birine düşen pay aritmetik olarak artarak ve en büyük 3 payın toplamının yedide biri en küçük iki payın toplamına eşit olacak biçimde bölüştürülmesi problemi böyleydi .7 evin her birinin 7 kedisi her kedinin kovaladığı 7 farenin olduğu problem geometrik olarak artan bir serinin toplamının formülünü bildiklerini gösteriyordu .

Böyle problemler için yazılmış şiirler şarkılar bile vardır .Şu şiiri anımsayalım :

“St. Ives’e giderken

7 karısı olan bir adamla karşılaştım

Her karısının yedi sepeti
Her sepetin yedi kedisi

Her kedinin yedi yavrusu vardı
Her yavrununda yedi çıngırağı vardı

Yavrular kediler sepetler kadınlar ve çıngıraklar

Kaç tanesi St. Ives’e gidiyordu ?
Mezopotamya Matematiği
Mezopotamya matematiği Mısır matematiğinin hiçbir dönemde ulaşamadığı bir düzeye erişti .Burada yüzyıllar içinde bile ilerlemeyi fark edebiliriz .M.Ö 2100’deki en eski metinlerde bile gelişmiş hesap izleri bulunur .Bu metinlerde 10’lu sistemin üzerine 60’lı sistemin eklendiği çarpım tabloları bulunmaktaydı .1 60 3600 ; hatta 60 üstü ve 60 üstü 2’yi gösteren çiviyazısı simgeler kullanılmıştı .Ama bu onların matematiğinin tipik özelliği değildi .Mısırlılar daha büyük her sayıyı yeni bir simge ile gösterirken Sümerliler aynı simgeyi kullanıp değerini bulunduğu yere göre belirliyorlardı .

Ayrıca 60’lı sayı sistemi insanlığın kalıcı bir kazanımı oldu .Günümüzde kullandığımız saatin 60 dakika ve 3600 saniyeye bölünmesinin de dairenin 360 dereceye her derecenin 60 dakikaya her dakikanın da 60 saniyeye bölünmesinin kökeni de Sümerliler’e kadar uzanır .Birim olarak 10 yerine 60’ın alınmasının sebebi ölçme sistemlerini birleştirmek olabileceği gibi 60’ın birçok böleninin olması da nedenlerden biri olabilir .


MISIR HİYEROGLİFLERİ
Eğer yazılarınızı eski Mısır hiyeroglifleriyle yazarsanız çoğu kişi bunları okumaya çalışmaktan vazgeçecektir .

Eski Mısır Hiyeroglifleri’nden Mısır rakamlarını öğrenmek çok kolaydır ; çünkü hepsinin bir görsel anlamı vardır .Büyük bir olasılıkla yazı yazmaya başlamadan once Mısırlılar sayı saymak için parmaklarını kullanıyorlardı .Başka birinin okuması için sayı düzenlemeleri gerektiğinde de yine büyük bir olasılıkla yan yana sıralanmış yapraklar ip parçaları ve çiçekler bırakıyorlardı .Neden mi böyle düşünüyoruz ? Çünkü daha sonradan hiyeroglif yazı sistemini geliştirdiklerinde yaprak ip parçaları çiçek ve hatta yılan ve iribaşlar kullanmışlar .
Rapor Et
Reklam
Eski 20 Mart 2011, 09:45

eski sayılar

#2 (link)
Misafir
Ziyaretçi
Misafir - avatarı
lütfen
Rapor Et
Eski 4 Nisan 2011, 14:48

Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz?

#3 (link)
gizem8hilal
Ziyaretçi
gizem8hilal - avatarı
İlkçağ insanı (ilkel insan, mağara insanı), rakam ve sayıları kullanmak ihtiyacını duymuştur. Bu devir insanları, ihtiyaçlarını kaydedip saklamasını da biliyordu. Avladıkları hayvanların veya sürüsündeki koyunların sayılarını belirtmek için, yaşadıkları mağara duvarlarına çizikler çizmişler, bir ağaç dalına çentikler yapmışlardır. Bazen de, ipe düğüm atmışlar, veya çakıl taşlarını kullanmışlardır .
Bu devrin, 13-15 yaşındaki insanı, koyun ve geyik gibi varlıkları, ok gibi eşyaları sayabilmek için, ufak yuvarlak çakıl taşlarına sahip olması, veya kesilmiş bir ağaç dalı (sopa) üzerine çentik yapması icap edecekti. Bir taş veya sopa Üzerinde işaretlenmiş bir adet çentik, tek koyunu ifade ederdi. Belli bir zaman sonra, eğer her bir taş veya çentik için bir koyun yoksa, o insan bir veya birkaç koyunun kayıp olduğunu anlardı. Bu devrin insanları; sayıları bir yere kaydedip saklanmasını da biliyorlardı.
İlkçağ insanları, sayılar için kil tabletler üzerine çizikler kazmayı, veya kesilmiş ağaç dalına çentikler yapmaya başlamakla, ilk defa, sayıları yazılı olarak ifade etmiş oluyorlardı. İlkçağ insanının kullandığı bu işaretler, rakam ve sayıların ilk yazılı ifadeleridir.
Bunların yanında; ilkel insanlar, sayıları belirtmek için, değişik ses ve kelimeler de kullanmışlardır. Bugün sayıları belirten standart hale gelmiş sembol (şekil) ve sözcükler vardır. Günümüzde; sayılar, hem 1, 2, 3, … gibi sembollerle ve hem de; bir, iki, üç, … gibi kelimelerle ifade edilmektedir. Bugün dört adet kalemi, “dört kalem” kelimesi ile belirtip “4″ sembolü ile gösterebiliyoruz.
Bilinen en eski sayma sistemlerinden biri, Eski Mısırlılara ait olanıdır. Eski Mısırlıların kullandıkları resim yazısının (hiyeroglif) başlangıç tarihi, M.Ö. 3300 yılına kadar geri gider. Eski Mısırlılara ait sayma sistemi, ilkçağ mağara, insanının önceleri kullandığı sayma sisteminin gelişmiş şeklidir.
Eski Mısır aritmetiği hakkındaki bilgilerimiz, papirüs tomarlarından elde edilmektedir. Bugün bu papirüsler; bilim tarihinde, M.Ö. 1900-1800 yılları için adlandırılan, Kahun ve Berlin papirüsleri ile, M.Ö. 1700 ile 1600 yılları için adlandırılan Hiksoslar Devrinden M.Ö. 1788-1580 kalma Rhind ve Moskova matematik papirüsleridir. Mısır matematiği hakkındaki diğer kaynaklar, birkaç parşömen tomarı ile kil ve tahta tabletlere dayanmaktadır.
Eski Mısır’da rakam ve sayılar bazı sembollerin (şekillerin) yan yana gelmesiyle ortaya çıkıyordu. Bütün rakamlar, 7 değişik şeklin bir araya gelmesiyle ve yazım biçimi de, sağdan sola doğru ifade ediliyordu
Bugün Kullanılan sembollerle ifade
Sayıları da, bu sembollerle göstererek bir sayı sistemi geliştirmişlerdir. Eski Mısırlıların, 1 den 1.000.000 a kadar olan sayıları göstermek ve yazmak için kullandıkları semboller (şekiller) yukarıda gösterilmiştir.
Tablonun incelenmesinden anlaşılacağı gibi, 9 sayısını ifade etmek için, 9 ayrı şekil, 90 sayısını ifade edebilmek için, 9 adet başka bir şekil; 99 için 18 aynı şekil, 999 sayısı için ise, 27 ayrı şekil (sembol) kullanmak gerekli olmaktadır.
Eski Mısırlılar; bu sembolleri, gerektiğinde tahta, ağaç ve taş üzerine de oymuşlardır. Bu rakamları bir kaç kez kullanarak, istenilen sayıları göstermişlerdir. Bu sistemde; gruplamalar onarlık yapıldığından, sistem onluk sistemdir.
Eski Mısır sistemi, aşağıdaki belirtilen özelliklerinden dolayı, mağara insanının kullandığı sistemin geliştirilmiş şekli idi:
a) Bir kümede bulunan şeylerin toplam sayısı, sadece bir tek sembolle belirtilmiştir. Örneğin: 10 sayısının bir topuk kemiği sembolü ile belirtilmesi gibi.
b) Diğer sayıları göstermek için, aynı semboller tekrarlanmıştır.
c) Bu sistemde 10 luk gruplar esas alınmıştır. On düşey çizgi, bir topuk kemiği sembolünü, on topuk kemiği sembolü de, bir çengel sembolüne eş değerdir. Bu şekilde devam eder. Konu hakkında bir fikir vermesi bakımından aşağıdaki tabloda on tabanlı sayıların, eski Mısır sayma düzeninde nasıl yapıldığı gösterilmiştir.Eski Mısırlılar sıfır kavramını da bilmiyorlardı ve sıfırı gösterecek bir işaret (sembol) kullanmamışlardı. Fakat sayıları, çarpma ve çıkarma tablolarına, ehramların yapılış tarihlerinden itibaren sahip bulunuyorlardı.
Mezopotamyalılarda rakamlar, çivi yazısında görülen çivi yada oduncu kamasına benzeyen şekillerden ibarettir.
Bu işaretlerin (sembollerin) uygun biçimde, yan yana veya büyük sayıları gösterebilmek için toplu olarak veya tekrarlayarak grup halinde yazmak suretiyle 60′a kadar sayıları ifade edebiliyorlardı.
Bu tür yazım şeklinde, 0.1 ve 0.01 ile 0.001 gibi rakamların arasındaki farkı anlamak bir hayli güçtü. Bunu anlayabilmek için; metin, konu ve karine yardımıyla sonuç çıkarma yollarına gidilirdi.
Mezopotamyalılar da, sıfır sembolünü kullanmamışlardır. Ancak astronomilerinde bu maksatla, özel bir sembol kullandıkları anlaşılmaktadır.

Roma rakamlarına dayalı, Roma sayma düzenine göre, toplama ve çıkarma işlemlerinin yapılmasında, bazı temel özellik ve sınırlamalar vardır. Bunları özetlersek :
A -Toplama İşlemindeki Özellik ve Sınırlamalar
a) Yanyana yazılan ve aynı sembolü gösteren, iki ya da üç temel rakam birbiriyle toplanarak, toplama karşı gelen sayı elde edilir .
Örnek :
I I I = 1 + 1 + 1 = 3
X X = 10 + 10 = 20
Uyarı : Bu rakamların yazılışları ile ilgili önemli özellik : I, X, C sembolleri yanyana, 3′ten fazla; V, L, D, M sembolleri de, 1′den fazla yazılamaz.
b) Büyük rakamların sağına yazılan küçük rakamlar, kendisi ile toplanarak toplama karşı gelen sayı elde edlir.
Örnek :
XV = 10 + 5 = 15
DLXI = 500 + 50 + 10 + 1 = 561
C) Küçük değerleri gösteren semboller (rakamlar), büyük değerleri gösteren sembollerin sağına yağıldığında, bu değerler toplanarak toplama karşı kelen sayı elde edilir.
Örnek :
MDCLXVI = 1000 + 500 + 100 + 50 + 10 + 5 + 1 = 1666
DLXI = 500 + 50 + 10 + 1 = 561
B -Çıkarma İşleminde Özellik ve Sınırlamalar
a) 5 ile başlayan V, L, D sembolleri, çıkarma amacı ile, kendinden büyük değer belirten sembollerin soluna yazılmaz.
b) Bir sayı, ancak aşağıdaki durumlarda çıkarılabilir.
I sadece V ve X den çıkarılabilir.
X sadece L ve C den çıkarılabilir.
C sadece D ve M den çıkarılabilir.
c) Küçük değerli semboller, büyük değerli sembollerin, soluna yazıldığında, büyük değerden küçüğü çıkarılır, bu fark sayıyı verir
Örnek :
IX = 10 -1 = 9
XL = 50 -10 = 40
d) İki büyük değerli sembol (rakam) arasına yazılan küçük değerli sembol, sağındakinden çıkarılmak suretiyle, sonuca denk gelen sayı elde edilir.
Örnek :
CXL = 140
LIX = 59
d) Roma sembollerinin değer bir özelliği de, binleri göstermek için sembolün üzerine bir yatay çizgi, milyonları göstermek için de; ilgili sembolün üzerine iki yatay çizgi çizilerek ifade edilir.
Görülüyor ki; Roma sayma düzeni, sadece toplama ve çıkarma işlemine dayanmaktadır. Sıfır ve basamak sistemi (kavramı) yoktur. Bu nedenle, aritmetik işlem yapmaya uygun değildir. Şöyle ki : Roma’da Forum Meydanı’ndaki süslü hitabet kürsüsünün “Columna Restrata” sütünunda 2.200.000 sayısını belirtmek için yirmi iki adet “yüz bin” i gösteren sembol (sayı işareti) oyulmuştur.
Roma rakamları bu özellikleri dolayısıyla; bugün matematik işlemleri yapmak amacıyla kullanılmamaktadır. Ancak, çok sınırlı olan, bazı özel gösterimler için kullanılmaktadır.


Arkadaşlar resimlerde vardı...=)
Rapor Et
Eski 4 Nisan 2011, 14:50

Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz?

#4 (link)
gizem8hilal
Ziyaretçi
gizem8hilal - avatarı
Eski Mısırlılara ait sayılar yeni sisteme göre hazırlanan 6. snıf matematik kitabının sayılar bölümünde mevcuttur.
Roma rakamlarını zaten heryerde bulabilirsin.
Sümer sayı sistemi altmışlık’tır. , yani “60’ı baz alır”. Sayma 1’den 60’a kadardır., tıpkı bizim bugün 1’den 100’e kadar saymamız gibi. Ama bizim “iki yüz” dediğimiz yerde, Sümerliler “2 geş” derdi ya da yazardı; bu , 120’ye denk gelen 2 x 60 anlamına geliyordu. Hesaplamalarında metin “yarısını al” ya da “üçte birini al” dediğinizde, bunun anlamı 60’ın yarısı = 30, 60’ın üçte biri = 20’dir. Ellerimizin parmaklarını saymaya alıştırılıp ondalık (“10 kez”) sistemle yetiştirilen bizler için bu, alışılmadık ve karmaşık görünebilir ama matematikçiler için altmışlık sistem bir keyiftir.
—————-
10 sayısı pek az tam sayıyla (2 ve 5 ile) bölünebilir. 100 rakamı ise sadece 2,4,5,10,20,25 ve 50 ‘ye tam bölünebilir. Ama 60 sayısı 2,3,4,5,6,10,12,15,20 ve 30’a bölünebilir. Gün içindeki saatleri sayışımızda Sümerlilerin 12’sini, zamanı sayışımızda Sümerlilerin 60’ını (bir dakika 60 saniye, bir saat 60 dakika) ve geometride Sümerlilerin 360’ını (bir dairede 360 derece olması) kullanmamızdan da anlaşıldığı gibi, altmışlık sistem göksel bilimlerde, zamanı hesaplamada ve (bir üçgenin açılarının toplamının 180 derece ve bir karenin açılarının toplamının 360 derece olduğu) geometride hala tek mükemmel sistemdir. Hem teorik hem de uygulamalı geometride bu sistem, çeşitli ve karmaşık bölgeleri, her türden fıçının hacmini, kanalların uzunluğunu veya gezegenler arasındaki uzaklığı hesaplamayı mümkün kılmaktadır.
—————-
“Altmışlık” adı verilmiş olmasına rağmen Sümerlilerin sayı ve matematik sistemi aslında sadece 60 sayısına değil, 6 ve 10’un bileşimine dayanmaktaydı. Ondalık sistemde her bir üst basamak, bir önceki toplamı 10 ile çarparak elde edilirken , Sümer sisteminde sayılar altmışlık çarpımlarla arttırılıyordu; bir kez 10 ile, bir kez 6 ile , sonra 10 ile, sonra tekrar 6 ile… Bu metot günümüz bilginlerini pek şaşırtmaktadır. Ondalık sistemin insanın el parmaklarının sayısına dayandığı açıktır, Sümer sistemindeki 10 böyle anlaşılabilir ; 6 nereden gelmiştir ve niçin?
—————-
Ondalık Altmışlık
I I
10 10
10 x 10 10 x 6
(10 x 10) x 10 (10 x 6) x 10
(10 x 10 x 10 ) x 10 (10 x 6 x 10 ) x 6
—————-
Mezopotamya‘da bulunan binlerce matematik tabledi arasında, birçokları hazır hesaplamalar taşımaktadır. Ancak (1,10,60 gibi) küçük sayılardan büyüklere doğru gitmemekte ; ancak astronomik denilebilecek bir rakamdan, 12960000’den başlayarak aşağı doğru azalmaktadırlar. Th. G. Pinches [ Some Mathematical Tablets of the British Museum (British Museum’dan bazı Matematik Tabletleri)] tarafından alıntı yapılan bir örnek en üst satırda şöyle başlar
—————-
1. 12960000 bunun üçte ikisi 8640000
2. bunun yarı kısmı 6480000
3. bunun üçüncü kısmı 4320000
4. bunun dördüncü kısmı 3240000
—————-

“bunun sekseninci kısmı 180000” deyip, 400’üncü kısmı “32400” a dek devam eder. Başka tabletler bu işlemi 16.000’inci kısma (810’a) eşittir) kadar izler; bu dizinin başlangıç rakamı 12960000’in 216.000’nci kısmı olan 60’ a kadar sürdüğüne şüphe yok.
—————-
Nippur ve Sippar’daki tapınak kütüphanelerinden ve Asur kralı Asurbanipal’in Ninova’daki kütüphanesinden çıkarılan binlerce matemetik tabletini inceledikten sonra H. V. Hilprecht [ The Babylonian Expedition of the University of Pennsylvania ( Pensilvanya Üniversitesi Babil Keşif Gezisi)] 12960000 sayısının gerçekten de astronomik olduğu sonucuna vardı ; her 2160 yılda bir Güneş’e doğan burç takımyıldızlarını tam bir Ev kaydıran Presesyon(bilmedikleriniz’de) fenomeninden kaynaklanmaktaydı. On iki Evin daireyi tamamlaması, yani Güneş’in başlangıçtaki arka fon konumuna gelmesi 25920 yıl sürmektedir ; 12960000 sayısı tamamlanan beş yüz Presesyon dairesini temsil etmektedir.
—————-
Hilprecht ve diğerlerinin düşündüğü gibi, Sümerlilerin sadece presesyon fenomeninin farkında olmakla kalmayıp, zodyakta bir Ev’den diğer Ev’e kayışın 2160 yıl sürdüğünün de farkında olduklarını öğrenmek inanılmaz birşeydi ; matematik sistemleri için her biri (insan ömrü için) fantastik bir rakam olan 25920 yıl gerektiren , beş yüz tamamlanmış on iki Ev döngünüsünü temsil eden bir sayıyı seçmiş olmaları ise iyice anlaşılmaz bir şeydir. Aslında modern gökbilimi, fenomenin varlığını ve Sümer’de hesaplandığı gibi dönemlerini kabul ediyorken, ne şimdi ne de geçmişte, tek bir Ev’in kaymasını bile (artık Kova burcuna kayış beklenmekte) şahsen tecrübe eden bir bilim adamı yoktur ve tüm bilimcileri bir araya getirsek bile tek bir döngünün tamamlanmasına tanık olmamışlardır. Yine de, işte Sümer tabletlerinde mevcut.
—————-
Hilprecht’in doğru biçimde önerdiği gibi, 12960000 sayısı gerçekten de gökbilimden kaynaklanmıştı ; tam bir presesyonel döngünün tamamlanması için gereken zaman (25920 yıl). Ama bu döngü daha insani boyutlara indirilebilirdi, yani tek bir zodyak EV’inin presesyonuna. Aslında 2160 yıldaki tek bir kayma bile bir Dünyalının ömrünün çok ötesinde olmasına rağmen, her 72 yılda bir, bir derecelik kayma gözlenebilir bir fenomendi. Formüldeki “dünyasal” unsur buydu.
—————-
Sonra, Anunnakilerin 3600 Dünya yılı sürdüğünü bildikleri Niburu’nun yörüngesi vardı. İşte bu noktada iki temel ve değişmez fenomen, yani Niburu ve Dünya’nın hareketlerini birleştiren belirli uzunluktaki döngüler 3600 : 2160 oranındaydı. Bu oran 10 : 6 ‘ya indirgenebilir. Her 21600 yılda bir Niburu, Güneş etrafında altı yörünge tamamlıyor ve Dünya on zodyak evi kayıyordu.
İşte , “altmışlık” denilen 6 x 10 x 6 x 10 almaşık sayma sistemini yaratan bu olabilirmiydi acaba?
Kaynak: Zecharia Sitchin, Kozmik Tohum (Sf:227-231)
Sümerler 60 rakamına dayanan seksajismal sayı sistemini kullanan Sümerler’in “sos” dedikleri bu 60′lık birim bütün zaman ve mekan hesaplarında kullanılmaktaydı ve onları bir uyum içersinde birbirine bağlıyordu. Ayı 30, yılı 360 gün olarak hesapladılar. Gece ve gündüzü 12′şer saate böldüler. Bir yılı 12 ay olarak hesapladılar. Ay ve Güneş tutulmasını hesapladılar. Aritmetik ve geometrinin temellerini attılar. Çarpma ve bölme cetvellerini buldular. Daireyi 360 dereceye böldüler
Maya sayı sistemi
maya sayı sistemi 20 lik tabana göredir.
Not Googleden eski uygarlıkla ilgili sayı sistemlerini arayacaksan çok fazla miktarda bilgi var.
Aramayı uygarlığın ismini yazarak sayı sistemi ekleyerek yaparsan bulursun
örnek arama şekli
Maya sayı sistemi
sümer sayı sistemi
gibi.

bide bu var hangisi işinize yararsa =) ....
Rapor Et
Eski 10 Nisan 2011, 21:23

Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz?

#5 (link)
gizem8hilal
Ziyaretçi
gizem8hilal - avatarı
num2

Eski%20Yunan

romarakamtablo
Rapor Et
Eski 2 Mayıs 2011, 19:53

Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz?

#6 (link)
MsXLabs Üyesi
MaTrOaK - avatarı
Sümer sayı sistemi altmışlık’tır. , yani “60’ı baz alır”. Sayma 1’den 60’a kadardır., tıpkı bizim bugün 1’den 100’e kadar saymamız gibi. Ama bizim “iki yüz” dediğimiz yerde, Sümerliler “2 geş” derdi ya da yazardı; bu , 120’ye denk gelen 2 x 60 anlamına geliyordu. Hesaplamalarında metin “yarısını al” ya da “üçte birini al” dediğinizde, bunun anlamı 60’ın yarısı = 30, 60’ın üçte biri = 20’dir. Ellerimizin parmaklarını saymaya alıştırılıp ondalık (“10 kez”) sistemle yetiştirilen bizler için bu, alışılmadık ve karmaşık görünebilir ama matematikçiler için altmışlık sistem bir keyiftir.
—————-
10 sayısı pek az tam sayıyla (2 ve 5 ile) bölünebilir. 100 rakamı ise sadece 2,4,5,10,20,25 ve 50 ‘ye tam bölünebilir. Ama 60 sayısı 2,3,4,5,6,10,12,15,20 ve 30’a bölünebilir. Gün içindeki saatleri sayışımızda Sümerlilerin 12’sini, zamanı sayışımızda Sümerlilerin 60’ını (bir dakika 60 saniye, bir saat 60 dakika) ve geometride Sümerlilerin 360’ını (bir dairede 360 derece olması) kullanmamızdan da anlaşıldığı gibi, altmışlık sistem göksel bilimlerde, zamanı hesaplamada ve (bir üçgenin açılarının toplamının 180 derece ve bir karenin açılarının toplamının 360 derece olduğu) geometride hala tek mükemmel sistemdir. Hem teorik hem de uygulamalı geometride bu sistem, çeşitli ve karmaşık bölgeleri, her türden fıçının hacmini, kanalların uzunluğunu veya gezegenler arasındaki uzaklığı hesaplamayı mümkün kılmaktadır.
—————-
“Altmışlık” adı verilmiş olmasına rağmen Sümerlilerin sayı ve matematik sistemi aslında sadece 60 sayısına değil, 6 ve 10’un bileşimine dayanmaktaydı. Ondalık sistemde her bir üst basamak, bir önceki toplamı 10 ile çarparak elde edilirken , Sümer sisteminde sayılar altmışlık çarpımlarla arttırılıyordu; bir kez 10 ile, bir kez 6 ile , sonra 10 ile, sonra tekrar 6 ile… Bu metot günümüz bilginlerini pek şaşırtmaktadır. Ondalık sistemin insanın el parmaklarının sayısına dayandığı açıktır, Sümer sistemindeki 10 böyle anlaşılabilir ; 6 nereden gelmiştir ve niçin?
—————-
Ondalık Altmışlık
I I
10 10
10 x 10 10 x 6
(10 x 10) x 10 (10 x 6) x 10
(10 x 10 x 10 ) x 10 (10 x 6 x 10 ) x 6
—————-
Mezopotamya‘da bulunan binlerce matematik tabledi arasında, birçokları hazır hesaplamalar taşımaktadır. Ancak (1,10,60 gibi) küçük sayılardan büyüklere doğru gitmemekte ; ancak astronomik denilebilecek bir rakamdan, 12960000’den başlayarak aşağı doğru azalmaktadırlar. Th. G. Pinches [ Some Mathematical Tablets of the British Museum (British Museum’dan bazı Matematik Tabletleri)] tarafından alıntı yapılan bir örnek en üst satırda şöyle başlar
—————-
1. 12960000 bunun üçte ikisi 8640000
2. bunun yarı kısmı 6480000
3. bunun üçüncü kısmı 4320000
4. bunun dördüncü kısmı 3240000

“bunun sekseninci kısmı 180000” deyip, 400’üncü kısmı “32400” a dek devam eder. Başka tabletler bu işlemi 16.000’inci kısma (810’a) eşittir) kadar izler; bu dizinin başlangıç rakamı 12960000’in 216.000’nci kısmı olan 60’ a kadar sürdüğüne şüphe yok.
—————-
Nippur ve Sippar’daki tapınak kütüphanelerinden ve Asur kralı Asurbanipal’in Ninova’daki kütüphanesinden çıkarılan binlerce matemetik tabletini inceledikten sonra H. V. Hilprecht [ The Babylonian Expedition of the University of Pennsylvania ( Pensilvanya Üniversitesi Babil Keşif Gezisi)] 12960000 sayısının gerçekten de astronomik olduğu sonucuna vardı ; her 2160 yılda bir Güneş’e doğan burç takımyıldızlarını tam bir Ev kaydıran Presesyon(bilmedikleriniz’de) fenomeninden kaynaklanmaktaydı. On iki Evin daireyi tamamlaması, yani Güneş’in başlangıçtaki arka fon konumuna gelmesi 25920 yıl sürmektedir ; 12960000 sayısı tamamlanan beş yüz Presesyon dairesini temsil etmektedir.
—————-
Hilprecht ve diğerlerinin düşündüğü gibi, Sümerlilerin sadece presesyon fenomeninin farkında olmakla kalmayıp, zodyakta bir Ev’den diğer Ev’e kayışın 2160 yıl sürdüğünün de farkında olduklarını öğrenmek inanılmaz birşeydi ; matematik sistemleri için her biri (insan ömrü için) fantastik bir rakam olan 25920 yıl gerektiren , beş yüz tamamlanmış on iki Ev döngünüsünü temsil eden bir sayıyı seçmiş olmaları ise iyice anlaşılmaz bir şeydir. Aslında modern gökbilimi, fenomenin varlığını ve Sümer’de hesaplandığı gibi dönemlerini kabul ediyorken, ne şimdi ne de geçmişte, tek bir Ev’in kaymasını bile (artık Kova burcuna kayış beklenmekte) şahsen tecrübe eden bir bilim adamı yoktur ve tüm bilimcileri bir araya getirsek bile tek bir döngünün tamamlanmasına tanık olmamışlardır. Yine de, işte Sümer tabletlerinde mevcut.
—————-
Hilprecht’in doğru biçimde önerdiği gibi, 12960000 sayısı gerçekten de gökbilimden kaynaklanmıştı ; tam bir presesyonel döngünün tamamlanması için gereken zaman (25920 yıl). Ama bu döngü daha insani boyutlara indirilebilirdi, yani tek bir zodyak EV’inin presesyonuna. Aslında 2160 yıldaki tek bir kayma bile bir Dünyalının ömrünün çok ötesinde olmasına rağmen, her 72 yılda bir, bir derecelik kayma gözlenebilir bir fenomendi. Formüldeki “dünyasal” unsur buydu.
—————-
Sonra, Anunnakilerin 3600 Dünya yılı sürdüğünü bildikleri Niburu’nun yörüngesi vardı. İşte bu noktada iki temel ve değişmez fenomen, yani Niburu ve Dünya’nın hareketlerini birleştiren belirli uzunluktaki döngüler 3600 : 2160 oranındaydı. Bu oran 10 : 6 ‘ya indirgenebilir. Her 21600 yılda bir Niburu, Güneş etrafında altı yörünge tamamlıyor ve Dünya on zodyak evi kayıyordu.
İşte , “altmışlık” denilen 6 x 10 x 6 x 10 almaşık sayma sistemini yaratan bu olabilirmiydi acaba?
Kaynak: Zecharia Sitchin, Kozmik Tohum (Sf:227-231)
Sümerler 60 rakamına dayanan seksajismal sayı sistemini kullanan Sümerler’in “sos” dedikleri bu 60′lık birim bütün zaman ve mekan hesaplarında kullanılmaktaydı ve onları bir uyum içersinde birbirine bağlıyordu. Ayı 30, yılı 360 gün olarak hesapladılar. Gece ve gündüzü 12′şer saate böldüler. Bir yılı 12 ay olarak hesapladılar. Ay ve Güneş tutulmasını hesapladılar. Aritmetik ve geometrinin temellerini attılar. Çarpma ve bölme cetvellerini buldular. Daireyi 360 dereceye böldüler
Maya sayı sistemi
maya sayı sistemi 20 lik tabana göredir.
Not Googleden eski uygarlıkla ilgili sayı sistemlerini arayacaksan çok fazla miktarda bilgi var.
Aramayı uygarlığın ismini yazarak sayı sistemi ekleyerek yaparsan bulursun
örnek arama şekli
Maya sayı sistemi
sümer sayı sistemi
gibi.

""Alıntıdır""
Rapor Et
Eski 4 Mayıs 2011, 22:46

Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz?

#7 (link)
Misafir
Ziyaretçi
Misafir - avatarı
bir kaç tane daha tablo koyabilirmisinizzzzz ? şimdiden teşekkürler
Rapor Et
Eski 14 Kasım 2011, 11:02

performans ödevim acil lazım

#8 (link)
EceAda
Ziyaretçi
EceAda - avatarı
eski uygarlıkları sayıları hangi sembollerle belirtklerini ve nasıl yazdıklarını araştırınız. (kaynaklar:ıfrah georges, rakamların evrensel tarihi , tübitak, ankara 2005,ball jonny, tudem, 2005 çin)yazıyor ne olur cevabını özenle yazınnnnnnnnnnnnnnnnn....................
Rapor Et
Eski 14 Kasım 2011, 11:06

Eski uygarlıkların sayı ve sayma sistemleri hakkında bilgi verir misiniz?

#9 (link)
Moderatör
SaKLI - avatarı
Alıntı:
EceAda adlı kullanıcıdan alıntı Mesajı Görüntüle

eski uygarlıkları sayıları hangi sembollerle belirtklerini ve nasıl yazdıklarını araştırınız. (kaynaklar:ıfrah georges, rakamların evrensel tarihi , tübitak, ankara 2005,ball jonny, tudem, 2005 çin)yazıyor ne olur cevabını özenle yazınnnnnnnnnnnnnnnnn....................
num2

Eski%20Yunan

romarakamtablo
Rapor Et
Eski 14 Kasım 2011, 11:08

performans ödevim acil lazım

#10 (link)
EceAda
Ziyaretçi
EceAda - avatarı
eski uygarlıkları sayıları hangi sembollerle belirtklerini ve nasıl yazdıklarını araştırınız. (kaynaklar:ıfrah georges, rakamların evrensel tarihi , tübitak, ankara 2005,ball jonny, tudem, 2005 çin)yazıyor ne olur cevabını özenle yazınnnnnnnnnnnnnnnnn....................
Rapor Et
Cevap Yaz Yeni Konu Aç
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.365 saniyede (84.95% PHP - 15.05% MySQL) 17 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +3 - Saat: 16:46
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi