Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Sohbet (Flash Chat) Forumda Ara

İçinde tel bulunan lamba nasıl ışık yayar ve telli lambaların sakıncaları var mıdır?

Bu konu Soru-Cevap forumunda BaByStAr tarafından 1 Mart 2009 (23:46) tarihinde açılmıştır.FacebookFacebook'ta Paylaş
17740 kez görüntülenmiş, 16 cevap yazılmış ve son mesaj 9 Mayıs 2012 (16:56) tarihinde gönderilmiştir.
  • 5 üzerinden 3.40  |  Oy Veren: 5      
Cevap Yaz Yeni Konu Aç
Bu konuyu arkadaşlarınızla paylaşın:    « Önceki Konu | Sonraki Konu »      Yazdırılabilir Sürümü GösterYazdırılabilir Sürümü Göster    AramaBu Konuda Ara  
Eski 24 Ekim 2010, 15:15

İçinde tel bulunan lamba nasıl ışık yayar ve telli lambaların sakıncaları var mıdır?

#11 (link)
Misafir
Ziyaretçi
Misafir - avatarı
lambalarda ne renk ve tür gaz bulunur
Rapor Et
Reklam
Eski 17 Ocak 2011, 22:44

İçinde tel bulunan lamba nasıl ışık yayar ve telli lambaların sakıncaları var mıdır?

#12 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Eğer sorduğunuz standart ampul işleyisi ve çeşitleri arasındaki kıyaslama ise inceleyiniz..

İletken bir filamandan akım geçirilirse, molekülleri uyarılacağından, filaman ısınarak parlamaya başlar: Bir elektrik ampulünün (ya da, daha doğru bir deyişle, akkor telli lambanın) çalışma ilkesi böyledir.
Ampul, günlük yaşamımızın bir parçasıdır; ama böylesine yalın bir aygıtı bu denli kullanışlı kılan teknolojiyi çoğumuz bilmeyiz.
Akkor metal filamanlarla yapılan pek çok deneyden sonra, 1800'lerin ortalarında, İngiltere'de Swan, 1878 yılında da Amerika'da EDİSON, ilk kez kullanışlı denebilecek ampuller yaptılar. Swan'ın yaptığı ilk lamba, havası boşaltılmış kapalı bir cam içerisindeki platin tellere tutturulmuş bir bitki lifinden oluşuyordu. Ancak, bitki lifinin kesiti her yerde aynı değildi; aynca camda ne kadar yüksek bir vakum sağlanırsa sağlansın, filaman malzemesi içinde her; zaman biraz oksijen kalıyordu. Bu iki engelden ötürü, Swan'ın ampulü uzun ömürlü değildi.
1905'lefde filamanlar, kalıplanmış selüloz üzerine karbon emdirilerek üretilmeğe başlandı. Piyasada satılmağa başlanan bu ampullerin, bir watt'lık elektrik enerjisine karşılık, yaklaşık 2-3 lümen'lik ışık çıkışı vardı (lm/W ile gösterilir). Lümen, bir mum'luk bir ışık kaynağından, birim uzaklıktaki birim akma saniyede düşen ışık miktarı olarak tanımlanır. Daha sonra metal filamanların üretimiyle ilgilenildi ve başlangıçta osmiyum ve tantal denendi. Ama her ikisinin de bazı olumsuz yönleri olduğundan,ömürleri kısa oluyordu. 1909'da tungsteni çok ince tel biçimine sokma sorunu çözüldü. Bu metal 3 382°C gibi çok yüksek bir sıcaklıkta eridiğinden, filamanı daha yüksek sıcaklıklarda çalıştırma ve daha çok ışık sağlama olanağı sağlandı.

Gaz doldurma: Bir ampuldeki filamanın ömrü, yapıldığı metalin buharlaşma îtzına, o da filamanın çalışma sıcaklığına bağlıdır. 1913 yılında buharlaşma hızını azaltan ve lambanın ömrünü artıran bir yol bulundu. Ampulün havasını boşaltmak yerine, bir gaz (örneğin, azot) doldurmak bunu sağlamaya yetiyordu. Gaz doldurmanın tek olumsuz yanı, lamba içinde oluşan konveksiyon akımlarıdır. Bu akımlar,, filamanın sıcaklığını ve dolayısıyla ışığını azaltır. Filamanın ince bir kıvrım biçiminde yapılması tekniği, Birinci Dünya savaşı nedeniyle 1918 yıllarına kadar gecikti.
1934 yılında filamanın kıvrımlı biçime getirilmesi, daha sonra da çift kıvrımlı biçime sokulması, sıcaklığın korunmasını sağladı. Bu filaman biçimi, bugün de kullanılmaktadır. Hergün kullandığımız armut biçimindeki ampullerin 8 lm/W'den 19 lm/W'a dek ışık verenleri, gücü 25 W'dan 150 W'a dek uzananları üretilmektedir.

Flamanlı lamba türleri: Ampul üretimi hızla artarken, türlerinin sayısı da binlere ulaşmıştır. Tıp aygıtlarında kullanılan pirinç tanesi büyüklüğünde olanından, DENİZ FENERLERİ'nde kullanılan futbol topu büyüklüğünde olanlarına dek pek çok türüne ras-lamak olasıdır. Bazı yansıtmalı türler, odağında bir sigarayı yakacak sıcaklığı üretecek biçimde, bazıları ise sıcaklığı arkadan dışarı atacak biçimde planlanmıştır. Süsleme amacıyla da çeşitli renk ve büyüklükte lambalar üretilmiştir. Bütün türlerin burada anlatılması olanaksızdır. Yalnız,1934'deki,ampul üretim tekniğinden bu yana, bu alanda gerçek ve tek ilerlemeyi simgeleyen önemli bir tür vardır: Tungsten halogen lambaları.

Tungsten halogen lambalar: Başlangıçta kullanılan maddelerin adından ötürü bunlara 'kuvars-iyot' lamba da denir. Tungsten halogen lambanın boyutu, aynı güçteki sıradan bir ampulden çok daha küçüktür. Ampule HALOGEN'lerden iyot (bazen brom ve flor da kullanılır) gazı doldurulur. Buharlaşan tungsten, iyotla birleşerek tungsten iyodür oluşturur. Böylece buharlaşan tungstenin, lamba camının iç çeperlerini kaplayarak karartması önlenir. Lamba içinde konveksiyon yoluyla dolaşan tungsten iyodür, filamana ulaştığında 2 000°C sıcaklıkta ayrışır ve tungstenin bir bölümü yeniden filamanın üzerinde birikir. İyot da yeniden birleşim yapmak için açığa çıkar. Bu çevrim 250°C'ın üstündeki sıcaklıkta da gerçekleşebildiğinden, lambanın boyutları ısı yitimini azaltmak için küçük tutulur.
Bu tür lambaların üstünlükleri şöyle sıralanabilir: 20-22 lm/W'a dek ışık verebilir; verdiği ışık miktarı lamba ömrü boyunca değişmez; filaman çok yüksek sıcaklıklarda çalıştırılabilir; buharlaşma azaltı-labildiğinden ömrü 2 000 saatin üstüne ulaşmıştır. Boyutlarının küçüklüğü hassas optik denetimde kullanılabilmesini sağlar, ayrıca vitrin aydınlatmalarında ve otomobil farlarında kullanılan 50-55 W*hk olanlardan, projektörlerde kullanılan 10kW'lıklara kadar çeşitli büyüklükleri bulunur. Düşük güçteki bu tür lambaların, ev aydınlatmasında da kullanılması düşünülmektedir. Ancak, kullanılan malzemenin çok pahalı oluşu, bu yaygınlaşmayı engelleyici niteliktedir.

Üretim:İlk ampuller elle yapılmaktaydı.Günümüzde bile özel türden birçok ampul gene elle yapılmaktadır. Sıradan ampuller saatte 2 000-4 000 lamba üretilebilen makinalarda yapılır.
Ampul makinası, yüksek arılıkta özel bir camla sürekli olarak beslenir. Makina, düzenli aralıklarla ka-lınlaştırdığı camı ampul biçimi vermek için kalıbın içine üfler. Daha sonra, ampuller soğutulur, bağlantıları kesilir ve taşıyıcı banda bırakılır. İşlem öylesine hızlıdır ki, beş makinalı bir fabrika, İngiltere'nin tüm gereksinimiyle Avrupa'nın bir bölümünün ampul talebini karşılayabilir.
Filaman için tungsten tozu, büyük basınç altında sıkıştırılmış sünek bir tel çubuk durumuna getirilir. Filaman telinin çapı 15 W'lık bir lamba için 0,014 mm, 100 W'lık lamba için 0,042 mm'dir. Ölçüm zorluğundan ötürü kalınlık, belli uzunluktaki tellerin tartımıyla denetlenir. 15 W'lık bir lambada kalınlık toleransı %» 2 dolayındadır, bu da 0,00014 mm'lik bir toleranstır (yani, görünür ışığın dalga boyunun dörtte biri kadar). Filaman daha sonra, kıvrım yapmak için bir mandrele sarılır; bu kıvrımlı tel yeniden bir mand-rele sarılarak,çift kıvrımlı filamanlar elde edilir. Teller tavlandıktan sonra mandreller asitte eritilir. Ardından yeniden tavlama yapılır. Daha sonra da mikroskopla incelenir.
Otomatik makinalar filamanlan, ampulün dışına çıkan tellere ve dolayısıyle gövdeye bağlar. Filaman bağlanan gövde, cam balonun içine sokulur ve gövde ile balon eritilerek kaynatılır.
Daha sonra ampulün havası tümüyle boşaltılır. Oksijen düzeyi milyonda 5-10'a düştüğünde, boşaltma borusu eritilerek kapatılır. Ardından metal kapak yapıştırılır. Dışa açılan teller de değme noktalarına lehimlenir.
Rapor Et
Eski 17 Şubat 2011, 14:36

İçinde tel bulunan lamba nasıl ışık yayar ve telli lambaların sakıncaları var mıdır?

#13 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Eğer sorduğunuz standart ampul işleyisi ve çeşitleri arasındaki kıyaslama ise inceleyiniz..

İletken bir filamandan akım geçirilirse, molekülleri uyarılacağından, filaman ısınarak parlamaya başlar: Bir elektrik ampulünün (ya da, daha doğru bir deyişle, akkor telli lambanın) çalışma ilkesi böyledir.
Ampul, günlük yaşamımızın bir parçasıdır; ama böylesine yalın bir aygıtı bu denli kullanışlı kılan teknolojiyi çoğumuz bilmeyiz.
Akkor metal filamanlarla yapılan pek çok deneyden sonra, 1800'lerin ortalarında, İngiltere'de Swan, 1878 yılında da Amerika'da EDİSON, ilk kez kullanışlı denebilecek ampuller yaptılar. Swan'ın yaptığı ilk lamba, havası boşaltılmış kapalı bir cam içerisindeki platin tellere tutturulmuş bir bitki lifinden oluşuyordu. Ancak, bitki lifinin kesiti her yerde aynı değildi; aynca camda ne kadar yüksek bir vakum sağlanırsa sağlansın, filaman malzemesi içinde her; zaman biraz oksijen kalıyordu. Bu iki engelden ötürü, Swan'ın ampulü uzun ömürlü değildi.
1905'lefde filamanlar, kalıplanmış selüloz üzerine karbon emdirilerek üretilmeğe başlandı. Piyasada satılmağa başlanan bu ampullerin, bir watt'lık elektrik enerjisine karşılık, yaklaşık 2-3 lümen'lik ışık çıkışı vardı (lm/W ile gösterilir). Lümen, bir mum'luk bir ışık kaynağından, birim uzaklıktaki birim akma saniyede düşen ışık miktarı olarak tanımlanır. Daha sonra metal filamanların üretimiyle ilgilenildi ve başlangıçta osmiyum ve tantal denendi. Ama her ikisinin de bazı olumsuz yönleri olduğundan,ömürleri kısa oluyordu. 1909'da tungsteni çok ince tel biçimine sokma sorunu çözüldü. Bu metal 3 382°C gibi çok yüksek bir sıcaklıkta eridiğinden, filamanı daha yüksek sıcaklıklarda çalıştırma ve daha çok ışık sağlama olanağı sağlandı.

Gaz doldurma: Bir ampuldeki filamanın ömrü, yapıldığı metalin buharlaşma îtzına, o da filamanın çalışma sıcaklığına bağlıdır. 1913 yılında buharlaşma hızını azaltan ve lambanın ömrünü artıran bir yol bulundu. Ampulün havasını boşaltmak yerine, bir gaz (örneğin, azot) doldurmak bunu sağlamaya yetiyordu. Gaz doldurmanın tek olumsuz yanı, lamba içinde oluşan konveksiyon akımlarıdır. Bu akımlar,, filamanın sıcaklığını ve dolayısıyla ışığını azaltır. Filamanın ince bir kıvrım biçiminde yapılması tekniği, Birinci Dünya savaşı nedeniyle 1918 yıllarına kadar gecikti.
1934 yılında filamanın kıvrımlı biçime getirilmesi, daha sonra da çift kıvrımlı biçime sokulması, sıcaklığın korunmasını sağladı. Bu filaman biçimi, bugün de kullanılmaktadır. Hergün kullandığımız armut biçimindeki ampullerin 8 lm/W'den 19 lm/W'a dek ışık verenleri, gücü 25 W'dan 150 W'a dek uzananları üretilmektedir.

Flamanlı lamba türleri: Ampul üretimi hızla artarken, türlerinin sayısı da binlere ulaşmıştır. Tıp aygıtlarında kullanılan pirinç tanesi büyüklüğünde olanından, DENİZ FENERLERİ'nde kullanılan futbol topu büyüklüğünde olanlarına dek pek çok türüne ras-lamak olasıdır. Bazı yansıtmalı türler, odağında bir sigarayı yakacak sıcaklığı üretecek biçimde, bazıları ise sıcaklığı arkadan dışarı atacak biçimde planlanmıştır. Süsleme amacıyla da çeşitli renk ve büyüklükte lambalar üretilmiştir. Bütün türlerin burada anlatılması olanaksızdır. Yalnız,1934'deki,ampul üretim tekniğinden bu yana, bu alanda gerçek ve tek ilerlemeyi simgeleyen önemli bir tür vardır: Tungsten halogen lambaları.

Tungsten halogen lambalar: Başlangıçta kullanılan maddelerin adından ötürü bunlara 'kuvars-iyot' lamba da denir. Tungsten halogen lambanın boyutu, aynı güçteki sıradan bir ampulden çok daha küçüktür. Ampule HALOGEN'lerden iyot (bazen brom ve flor da kullanılır) gazı doldurulur. Buharlaşan tungsten, iyotla birleşerek tungsten iyodür oluşturur. Böylece buharlaşan tungstenin, lamba camının iç çeperlerini kaplayarak karartması önlenir. Lamba içinde konveksiyon yoluyla dolaşan tungsten iyodür, filamana ulaştığında 2 000°C sıcaklıkta ayrışır ve tungstenin bir bölümü yeniden filamanın üzerinde birikir. İyot da yeniden birleşim yapmak için açığa çıkar. Bu çevrim 250°C'ın üstündeki sıcaklıkta da gerçekleşebildiğinden, lambanın boyutları ısı yitimini azaltmak için küçük tutulur.
Bu tür lambaların üstünlükleri şöyle sıralanabilir: 20-22 lm/W'a dek ışık verebilir; verdiği ışık miktarı lamba ömrü boyunca değişmez; filaman çok yüksek sıcaklıklarda çalıştırılabilir; buharlaşma azaltı-labildiğinden ömrü 2 000 saatin üstüne ulaşmıştır. Boyutlarının küçüklüğü hassas optik denetimde kullanılabilmesini sağlar, ayrıca vitrin aydınlatmalarında ve otomobil farlarında kullanılan 50-55 W*hk olanlardan, projektörlerde kullanılan 10kW'lıklara kadar çeşitli büyüklükleri bulunur. Düşük güçteki bu tür lambaların, ev aydınlatmasında da kullanılması düşünülmektedir. Ancak, kullanılan malzemenin çok pahalı oluşu, bu yaygınlaşmayı engelleyici niteliktedir.

Üretim:İlk ampuller elle yapılmaktaydı.Günümüzde bile özel türden birçok ampul gene elle yapılmaktadır. Sıradan ampuller saatte 2 000-4 000 lamba üretilebilen makinalarda yapılır.
Ampul makinası, yüksek arılıkta özel bir camla sürekli olarak beslenir. Makina, düzenli aralıklarla ka-lınlaştırdığı camı ampul biçimi vermek için kalıbın içine üfler. Daha sonra, ampuller soğutulur, bağlantıları kesilir ve taşıyıcı banda bırakılır. İşlem öylesine hızlıdır ki, beş makinalı bir fabrika, İngiltere'nin tüm gereksinimiyle Avrupa'nın bir bölümünün ampul talebini karşılayabilir.
Filaman için tungsten tozu, büyük basınç altında sıkıştırılmış sünek bir tel çubuk durumuna getirilir. Filaman telinin çapı 15 W'lık bir lamba için 0,014 mm, 100 W'lık lamba için 0,042 mm'dir. Ölçüm zorluğundan ötürü kalınlık, belli uzunluktaki tellerin tartımıyla denetlenir. 15 W'lık bir lambada kalınlık toleransı %» 2 dolayındadır, bu da 0,00014 mm'lik bir toleranstır (yani, görünür ışığın dalga boyunun dörtte biri kadar). Filaman daha sonra, kıvrım yapmak için bir mandrele sarılır; bu kıvrımlı tel yeniden bir mand-rele sarılarak,çift kıvrımlı filamanlar elde edilir. Teller tavlandıktan sonra mandreller asitte eritilir. Ardından yeniden tavlama yapılır. Daha sonra da mikroskopla incelenir.
Otomatik makinalar filamanlan, ampulün dışına çıkan tellere ve dolayısıyle gövdeye bağlar. Filaman bağlanan gövde, cam balonun içine sokulur ve gövde ile balon eritilerek kaynatılır.
Daha sonra ampulün havası tümüyle boşaltılır. Oksijen düzeyi milyonda 5-10'a düştüğünde, boşaltma borusu eritilerek kapatılır. Ardından metal kapak yapıştırılır. Dışa açılan teller de değme noktalarına lehimlenir.


Alıntıdır..
Eski 02-03-2009 #2 (mesaj-linki)
SEDEPH Bayan-F
SEDEPH - avatarı

içinde tel bulunan lamba derken neyi kastediyorsunuz? Bildiğimiz akkor , tungsten ya da karbon telli ampüllerden mi ?
Bu Mesajı Yetkililere Rapor Et Bu mesaja hızlı cevap gönder
Eski 02-03-2009 #3 (mesaj-linki)
SEDEPH Bayan-F
SEDEPH - avatarı

Eğer sorduğunuz standart ampul işleyisi ve çeşitleri arasındaki kıyaslama ise inceleyiniz..

İletken bir filamandan akım geçirilirse, molekülleri uyarılacağından, filaman ısınarak parlamaya başlar: Bir elektrik ampulünün (ya da, daha doğru bir deyişle, akkor telli lambanın) çalışma ilkesi böyledir.
Ampul, günlük yaşamımızın bir parçasıdır; ama böylesine yalın bir aygıtı bu denli kullanışlı kılan teknolojiyi çoğumuz bilmeyiz.
Akkor metal filamanlarla yapılan pek çok deneyden sonra, 1800'lerin ortalarında, İngiltere'de Swan, 1878 yılında da Amerika'da EDİSON, ilk kez kullanışlı denebilecek ampuller yaptılar. Swan'ın yaptığı ilk lamba, havası boşaltılmış kapalı bir cam içerisindeki platin tellere tutturulmuş bir bitki lifinden oluşuyordu. Ancak, bitki lifinin kesiti her yerde aynı değildi; aynca camda ne kadar yüksek bir vakum sağlanırsa sağlansın, filaman malzemesi içinde her; zaman biraz oksijen kalıyordu. Bu iki engelden ötürü, Swan'ın ampulü uzun ömürlü değildi.
1905'lefde filamanlar, kalıplanmış selüloz üzerine karbon emdirilerek üretilmeğe başlandı. Piyasada satılmağa başlanan bu ampullerin, bir watt'lık elektrik enerjisine karşılık, yaklaşık 2-3 lümen'lik ışık çıkışı vardı (lm/W ile gösterilir). Lümen, bir mum'luk bir ışık kaynağından, birim uzaklıktaki birim akma saniyede düşen ışık miktarı olarak tanımlanır. Daha sonra metal filamanların üretimiyle ilgilenildi ve başlangıçta osmiyum ve tantal denendi. Ama her ikisinin de bazı olumsuz yönleri olduğundan,ömürleri kısa oluyordu. 1909'da tungsteni çok ince tel biçimine sokma sorunu çözüldü. Bu metal 3 382°C gibi çok yüksek bir sıcaklıkta eridiğinden, filamanı daha yüksek sıcaklıklarda çalıştırma ve daha çok ışık sağlama olanağı sağlandı.

Gaz doldurma: Bir ampuldeki filamanın ömrü, yapıldığı metalin buharlaşma îtzına, o da filamanın çalışma sıcaklığına bağlıdır. 1913 yılında buharlaşma hızını azaltan ve lambanın ömrünü artıran bir yol bulundu. Ampulün havasını boşaltmak yerine, bir gaz (örneğin, azot) doldurmak bunu sağlamaya yetiyordu. Gaz doldurmanın tek olumsuz yanı, lamba içinde oluşan konveksiyon akımlarıdır. Bu akımlar,, filamanın sıcaklığını ve dolayısıyla ışığını azaltır. Filamanın ince bir kıvrım biçiminde yapılması tekniği, Birinci Dünya savaşı nedeniyle 1918 yıllarına kadar gecikti.
1934 yılında filamanın kıvrımlı biçime getirilmesi, daha sonra da çift kıvrımlı biçime sokulması, sıcaklığın korunmasını sağladı. Bu filaman biçimi, bugün de kullanılmaktadır. Hergün kullandığımız armut biçimindeki ampullerin 8 lm/W'den 19 lm/W'a dek ışık verenleri, gücü 25 W'dan 150 W'a dek uzananları üretilmektedir.

Flamanlı lamba türleri: Ampul üretimi hızla artarken, türlerinin sayısı da binlere ulaşmıştır. Tıp aygıtlarında kullanılan pirinç tanesi büyüklüğünde olanından, DENİZ FENERLERİ'nde kullanılan futbol topu büyüklüğünde olanlarına dek pek çok türüne ras-lamak olasıdır. Bazı yansıtmalı türler, odağında bir sigarayı yakacak sıcaklığı üretecek biçimde, bazıları ise sıcaklığı arkadan dışarı atacak biçimde planlanmıştır. Süsleme amacıyla da çeşitli renk ve büyüklükte lambalar üretilmiştir. Bütün türlerin burada anlatılması olanaksızdır. Yalnız,1934'deki,ampul üretim tekniğinden bu yana, bu alanda gerçek ve tek ilerlemeyi simgeleyen önemli bir tür vardır: Tungsten halogen lambaları.

Tungsten halogen lambalar: Başlangıçta kullanılan maddelerin adından ötürü bunlara 'kuvars-iyot' lamba da denir. Tungsten halogen lambanın boyutu, aynı güçteki sıradan bir ampulden çok daha küçüktür. Ampule HALOGEN'lerden iyot (bazen brom ve flor da kullanılır) gazı doldurulur. Buharlaşan tungsten, iyotla birleşerek tungsten iyodür oluşturur. Böylece buharlaşan tungstenin, lamba camının iç çeperlerini kaplayarak karartması önlenir. Lamba içinde konveksiyon yoluyla dolaşan tungsten iyodür, filamana ulaştığında 2 000°C sıcaklıkta ayrışır ve tungstenin bir bölümü yeniden filamanın üzerinde birikir. İyot da yeniden birleşim yapmak için açığa çıkar. Bu çevrim 250°C'ın üstündeki sıcaklıkta da gerçekleşebildiğinden, lambanın boyutları ısı yitimini azaltmak için küçük tutulur.
Bu tür lambaların üstünlükleri şöyle sıralanabilir: 20-22 lm/W'a dek ışık verebilir; verdiği ışık miktarı lamba ömrü boyunca değişmez; filaman çok yüksek sıcaklıklarda çalıştırılabilir; buharlaşma azaltı-labildiğinden ömrü 2 000 saatin üstüne ulaşmıştır. Boyutlarının küçüklüğü hassas optik denetimde kullanılabilmesini sağlar, ayrıca vitrin aydınlatmalarında ve otomobil farlarında kullanılan 50-55 W*hk olanlardan, projektörlerde kullanılan 10kW'lıklara kadar çeşitli büyüklükleri bulunur. Düşük güçteki bu tür lambaların, ev aydınlatmasında da kullanılması düşünülmektedir. Ancak, kullanılan malzemenin çok pahalı oluşu, bu yaygınlaşmayı engelleyici niteliktedir.

Üretim:İlk ampuller elle yapılmaktaydı.Günümüzde bile özel türden birçok ampul gene elle yapılmaktadır. Sıradan ampuller saatte 2 000-4 000 lamba üretilebilen makinalarda yapılır.
Ampul makinası, yüksek arılıkta özel bir camla sürekli olarak beslenir. Makina, düzenli aralıklarla ka-lınlaştırdığı camı ampul biçimi vermek için kalıbın içine üfler. Daha sonra, ampuller soğutulur, bağlantıları kesilir ve taşıyıcı banda bırakılır. İşlem öylesine hızlıdır ki, beş makinalı bir fabrika, İngiltere'nin tüm gereksinimiyle Avrupa'nın bir bölümünün ampul talebini karşılayabilir.
Filaman için tungsten tozu, büyük basınç altında sıkıştırılmış sünek bir tel çubuk durumuna getirilir. Filaman telinin çapı 15 W'lık bir lamba için 0,014 mm, 100 W'lık lamba için 0,042 mm'dir. Ölçüm zorluğundan ötürü kalınlık, belli uzunluktaki tellerin tartımıyla denetlenir. 15 W'lık bir lambada kalınlık toleransı %» 2 dolayındadır, bu da 0,00014 mm'lik bir toleranstır (yani, görünür ışığın dalga boyunun dörtte biri kadar). Filaman daha sonra, kıvrım yapmak için bir mandrele sarılır; bu kıvrımlı tel yeniden bir mand-rele sarılarak,çift kıvrımlı filamanlar elde edilir. Teller tavlandıktan sonra mandreller asitte eritilir. Ardından yeniden tavlama yapılır. Daha sonra da mikroskopla incelenir.
Otomatik makinalar filamanlan, ampulün dışına çıkan tellere ve dolayısıyle gövdeye bağlar. Filaman bağlanan gövde, cam balonun içine sokulur ve gövde ile balon eritilerek kaynatılır.
Daha sonra ampulün havası tümüyle boşaltılır. Oksijen düzeyi milyonda 5-10'a düştüğünde, boşaltma borusu eritilerek kapatılır. Ardından metal kapak yapıştırılır. Dışa açılan teller de değme noktalarına lehimlenir.


Alıntıdır..
Bu Mesajı Yetkililere Rapor Et Bu mesaja hızlı cevap gönder
Eski 02-03-2009 #4 (mesaj-linki)
Keten Prenses Bayan-F
Keten Prenses - avatarı

Ampül Nasıl Işık verir - yapısı
Işık sistemlerinin icadından önce güneş battıktan sonraki ışık ihtiyacı insanlar için büyük bir sorun olsa gerekti. Tabi ki mumlar meşaleler gaz lambaları gibi ilkel ışık sistemleri kullanılıyordu. Ama sizi o yıllara götürseler herhalde ampulsüz bir dünyaya pek de sabredemezdiniz. Ampulün icat edilmesinden bugüne ışık sistemleri çok değişti. Desem ki size ampuller pek değişmedi. Çokta yalan söylemiş olmam galiba.


Bu yazımda en basit ışık sistemi olan ampulleri anlatmaya çalışacağım. Fakat benim anlatacağım hepimizin evinde bulunan klasik akkor telli ampuller. Ampullere çok daha yakından bakmak isterseniz devam edin

NASIL ÇALIŞIR?

Aslında ampullerin çok basit bir ışık sistemi yapısı vardır. Hepimiz biliriz ki üzerinden elektrik akımı geçen bir metal direnç gösterir. Bu direnç karşısında ısınır. Bunu en yakın elektrik sobalarında ve elektrik ocaklarında görebilirsiniz. İşte ampulde bu prensibe göre çalışır. Ampulün içinde bulunan çok ince filaman dediğimiz (çoğunlukla tungsten metalinden yapılmış) bir tel bulunur. Bu telden geçen elektrik akımı sonucunda tel aşırı derecede ısınarak (yaklaşık 3000 C) ışık yaymaya başlar.


Ampulün yapısına bakacak olursak içi argon gazıyla dolu armut şeklinde bir camdan yapıldığını görürüz. İçinde elektrik akımının geçtiği kalın iki tane tel vardır. Bu tellerin ucunda iki tel arasında ise filaman bulunur. Filamanı tutan ayrıca iki veya daha fazla destek telleri vardır. Akım ve destek telleri cam bir kaideye tutturulmuştur.

Akım tellerinin birisi ampulün altındaki noktaya diğeri ise vidalı kısmın yan tarafına bağlıdır. Elektrik bu noktalardan temin edilir.

Filamanlar tungsten metalinden yapılırlar. 60 Watt 'lık bir ampulde bulunan filamanın boyu yaklaşık iki metredir. Çift sarmallı olarak yapıldıkları için boyu size kısa gelebilir. Bunu aşağıdaki filamanın büyültülmüş resminden daha iyi anlayabilirsiniz.

NEDEN TUNGSTEN METAL?

Ampulün içindeki filamanın yüksek sıcaklığa ulaşarak ışık yaydığını artık biliyoruz. Bir filamanın bu denli yüksek bir sıcaklıkta erimemesi lazımdır.

İlk ampullerde kullanılan karbon filamanlar 2100 C üzerindeki sıcaklıklarda buharlaşarak inceliyor ve kopuyordu. Daha düşük bir sıcaklık loş bir ışık; daha yüksek bir sıcaklık ise filamanın erimesi demekti.

Tungsten filamanlar ise yüksek erime derecesiyle (3410 C) ampullerde kullanılabilecek en iyi metaldir. Yüksek ısı derecesinde parlak ışık verebilmektedir. Bununla beraber tungsten filaman da bir gün incelecek ve kopacaktır.

NEDEN ARGON GAZI?

Yanmanın gerçekleşebilmesi için ısınan bir cisim ve oksijen gazı gereklidir. Oksijen gazı yoksa yanma gerçekleşmez. Bu yüzden ilk ampullerde ampulün içindeki hava vakum ediliyor ve nerdeyse oksijen gazı olmuyordu. Böylece içerdeki filaman yanıp kül olmuyordu.

Tungsten filamanlı ampullerde şu problem ortaya çıktı: Tungsten filaman yüksek sıcaklıkta buharlaşmaya başlıyordu. Bu buhar vakumsuz havasız bir ortamdan dolayı ampulün iç yüzeyinde bir is tabakası oluşturuyordu. Bu da zamanla ampulüm kararması ve ışığı hapsetmesi demekti.

Bu yüzden kullandığımız modern ampullerin içerisine argon gazı doldurulmaktadır. Argon gazı ampulün zamanla kararmasını önlemektedir.

AMPULÜN HİKAYESİ

Burada uzun uzadıya tarihçe anlatmayacağım size. Ampulle ilgili olarak pek çok kişi tarihte çalışmalar yapmıştır. Fakat yapılan ampuller çok kısa ömürlü olmuşlardır. Size iki kişiden bahsedeceğim. Birisi İngiliz Joseph Swan ve diğeri ise (sanırım hepinizin en çok duyduğu isim) Amerikalı Thomas Edison. Şaşırtıcı bir şekilde her ikiside birbirinden habersiz 1878-1879 yıllarında o zaman göre uzun dayanan (yaklaşık 12-13 saat) ampulleri yapmışlardı. Ampullerinde kullandıkları tel ise kömürleşmiş pamuk lifiydi. Yani karbon elementiydi. Daha sonra 1880 yılında Edison kömürleşmiş bambu lifinden 40 saate kadar dayanan ampulünü yaptı.

Edison'un ampullerindeki sorun filaman telinin ömrünün kısa olmasıydı. Kullandığı karbon lifleri 2675 C 'de ışık saçıyordu. Bu karbon lifleri kısa sürede buharlaşarak inceliyor ve kopuyordu. Çözüm düşük sıcaklıktı fakat buda az ve loş ışık demekti.

Diğer mucitlerde çalışmalarını sürdürdüler. 1898 'de Karl Auer filaman olarak erime derecesi 2700 C olan osmiyumu kullandı. 1903 'de Siemens ve Halske tantalumu kullandı. Erime noktası 2996 C idi. Fakat hiçbirisi bugün kullandığımız ampul değildi.

Nihayet 1906-10 yıllarında General Electric Firması ve William Coolidge bugünkü modern ampullerde kullanılan tungsten filamanlı ampulü geliştirdiler. İşte o gün bu gündür bu ampulleri kullanıyoruz.

AMPUL AVANTAJLI MI DEĞİL Mİ?

Birazda akkor telli ampullerin avantajlarına ve dezavantajlarına değinelim:

Avantajları:

- Yaygın kullanım alanı ve düşük maliyet

- Kolaylıkla elektrik sistemlerine bağlanabilmesi

- Ufak araçlara uyumluluğu

- Düşük voltajlarda örneğin pillerle bile çalışabilmesi

- Çok değişik şekillerde ve boyutlarda olabilmesi

Dezavantajları:

- Tek dezavantaj olarak elektrik enerjisinin sadece %10 kadarını ışığa çevirdiğini geri kalanını ise ısı enerjisine çevirdiğini söyleyebilirim.

Başka bir dezavantajı varsa bile pek de haksızlık etmemek lazım ampullere!

kaynak
Bu Mesajı Yetkililere Rapor Et
Rapor Et
Eski 24 Şubat 2011, 14:25

İçinde tel bulunan lamba nasıl ışık yayar ve telli lambaların sakıncaları var mıdır?

#14 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Eğer sorduğunuz standart ampul işleyisi ve çeşitleri arasındaki kıyaslama ise inceleyiniz..

İletken bir filamandan akım geçirilirse, molekülleri uyarılacağından, filaman ısınarak parlamaya başlar: Bir elektrik ampulünün (ya da, daha doğru bir deyişle, akkor telli lambanın) çalışma ilkesi böyledir.
Ampul, günlük yaşamımızın bir parçasıdır; ama böylesine yalın bir aygıtı bu denli kullanışlı kılan teknolojiyi çoğumuz bilmeyiz.
Akkor metal filamanlarla yapılan pek çok deneyden sonra, 1800'lerin ortalarında, İngiltere'de Swan, 1878 yılında da Amerika'da EDİSON, ilk kez kullanışlı denebilecek ampuller yaptılar. Swan'ın yaptığı ilk lamba, havası boşaltılmış kapalı bir cam içerisindeki platin tellere tutturulmuş bir bitki lifinden oluşuyordu. Ancak, bitki lifinin kesiti her yerde aynı değildi; aynca camda ne kadar yüksek bir vakum sağlanırsa sağlansın, filaman malzemesi içinde her; zaman biraz oksijen kalıyordu. Bu iki engelden ötürü, Swan'ın ampulü uzun ömürlü değildi.
1905'lefde filamanlar, kalıplanmış selüloz üzerine karbon emdirilerek üretilmeğe başlandı. Piyasada satılmağa başlanan bu ampullerin, bir watt'lık elektrik enerjisine karşılık, yaklaşık 2-3 lümen'lik ışık çıkışı vardı (lm/W ile gösterilir). Lümen, bir mum'luk bir ışık kaynağından, birim uzaklıktaki birim akma saniyede düşen ışık miktarı olarak tanımlanır. Daha sonra metal filamanların üretimiyle ilgilenildi ve başlangıçta osmiyum ve tantal denendi. Ama her ikisinin de bazı olumsuz yönleri olduğundan,ömürleri kısa oluyordu. 1909'da tungsteni çok ince tel biçimine sokma sorunu çözüldü. Bu metal 3 382°C gibi çok yüksek bir sıcaklıkta eridiğinden, filamanı daha yüksek sıcaklıklarda çalıştırma ve daha çok ışık sağlama olanağı sağlandı.

Gaz doldurma: Bir ampuldeki filamanın ömrü, yapıldığı metalin buharlaşma îtzına, o da filamanın çalışma sıcaklığına bağlıdır. 1913 yılında buharlaşma hızını azaltan ve lambanın ömrünü artıran bir yol bulundu. Ampulün havasını boşaltmak yerine, bir gaz (örneğin, azot) doldurmak bunu sağlamaya yetiyordu. Gaz doldurmanın tek olumsuz yanı, lamba içinde oluşan konveksiyon akımlarıdır. Bu akımlar,, filamanın sıcaklığını ve dolayısıyla ışığını azaltır. Filamanın ince bir kıvrım biçiminde yapılması tekniği, Birinci Dünya savaşı nedeniyle 1918 yıllarına kadar gecikti.
1934 yılında filamanın kıvrımlı biçime getirilmesi, daha sonra da çift kıvrımlı biçime sokulması, sıcaklığın korunmasını sağladı. Bu filaman biçimi, bugün de kullanılmaktadır. Hergün kullandığımız armut biçimindeki ampullerin 8 lm/W'den 19 lm/W'a dek ışık verenleri, gücü 25 W'dan 150 W'a dek uzananları üretilmektedir.

Flamanlı lamba türleri: Ampul üretimi hızla artarken, türlerinin sayısı da binlere ulaşmıştır. Tıp aygıtlarında kullanılan pirinç tanesi büyüklüğünde olanından, DENİZ FENERLERİ'nde kullanılan futbol topu büyüklüğünde olanlarına dek pek çok türüne ras-lamak olasıdır. Bazı yansıtmalı türler, odağında bir sigarayı yakacak sıcaklığı üretecek biçimde, bazıları ise sıcaklığı arkadan dışarı atacak biçimde planlanmıştır. Süsleme amacıyla da çeşitli renk ve büyüklükte lambalar üretilmiştir. Bütün türlerin burada anlatılması olanaksızdır. Yalnız,1934'deki,ampul üretim tekniğinden bu yana, bu alanda gerçek ve tek ilerlemeyi simgeleyen önemli bir tür vardır: Tungsten halogen lambaları.

Tungsten halogen lambalar: Başlangıçta kullanılan maddelerin adından ötürü bunlara 'kuvars-iyot' lamba da denir. Tungsten halogen lambanın boyutu, aynı güçteki sıradan bir ampulden çok daha küçüktür. Ampule HALOGEN'lerden iyot (bazen brom ve flor da kullanılır) gazı doldurulur. Buharlaşan tungsten, iyotla birleşerek tungsten iyodür oluşturur. Böylece buharlaşan tungstenin, lamba camının iç çeperlerini kaplayarak karartması önlenir. Lamba içinde konveksiyon yoluyla dolaşan tungsten iyodür, filamana ulaştığında 2 000°C sıcaklıkta ayrışır ve tungstenin bir bölümü yeniden filamanın üzerinde birikir. İyot da yeniden birleşim yapmak için açığa çıkar. Bu çevrim 250°C'ın üstündeki sıcaklıkta da gerçekleşebildiğinden, lambanın boyutları ısı yitimini azaltmak için küçük tutulur.
Bu tür lambaların üstünlükleri şöyle sıralanabilir: 20-22 lm/W'a dek ışık verebilir; verdiği ışık miktarı lamba ömrü boyunca değişmez; filaman çok yüksek sıcaklıklarda çalıştırılabilir; buharlaşma azaltı-labildiğinden ömrü 2 000 saatin üstüne ulaşmıştır. Boyutlarının küçüklüğü hassas optik denetimde kullanılabilmesini sağlar, ayrıca vitrin aydınlatmalarında ve otomobil farlarında kullanılan 50-55 W*hk olanlardan, projektörlerde kullanılan 10kW'lıklara kadar çeşitli büyüklükleri bulunur. Düşük güçteki bu tür lambaların, ev aydınlatmasında da kullanılması düşünülmektedir. Ancak, kullanılan malzemenin çok pahalı oluşu, bu yaygınlaşmayı engelleyici niteliktedir.

Üretim:İlk ampuller elle yapılmaktaydı.Günümüzde bile özel türden birçok ampul gene elle yapılmaktadır. Sıradan ampuller saatte 2 000-4 000 lamba üretilebilen makinalarda yapılır.
Ampul makinası, yüksek arılıkta özel bir camla sürekli olarak beslenir. Makina, düzenli aralıklarla ka-lınlaştırdığı camı ampul biçimi vermek için kalıbın içine üfler. Daha sonra, ampuller soğutulur, bağlantıları kesilir ve taşıyıcı banda bırakılır. İşlem öylesine hızlıdır ki, beş makinalı bir fabrika, İngiltere'nin tüm gereksinimiyle Avrupa'nın bir bölümünün ampul talebini karşılayabilir.
Filaman için tungsten tozu, büyük basınç altında sıkıştırılmış sünek bir tel çubuk durumuna getirilir. Filaman telinin çapı 15 W'lık bir lamba için 0,014 mm, 100 W'lık lamba için 0,042 mm'dir. Ölçüm zorluğundan ötürü kalınlık, belli uzunluktaki tellerin tartımıyla denetlenir. 15 W'lık bir lambada kalınlık toleransı %» 2 dolayındadır, bu da 0,00014 mm'lik bir toleranstır (yani, görünür ışığın dalga boyunun dörtte biri kadar). Filaman daha sonra, kıvrım yapmak için bir mandrele sarılır; bu kıvrımlı tel yeniden bir mand-rele sarılarak,çift kıvrımlı filamanlar elde edilir. Teller tavlandıktan sonra mandreller asitte eritilir. Ardından yeniden tavlama yapılır. Daha sonra da mikroskopla incelenir.
Otomatik makinalar filamanlan, ampulün dışına çıkan tellere ve dolayısıyle gövdeye bağlar. Filaman bağlanan gövde, cam balonun içine sokulur ve gövde ile balon eritilerek kaynatılır.
Daha sonra ampulün havası tümüyle boşaltılır. Oksijen düzeyi milyonda 5-10'a düştüğünde, boşaltma borusu eritilerek kapatılır. Ardından metal kapak yapıştırılır. Dışa açılan teller de değme noktalarına lehimlenir.

--------------------------------------------------------------------------------
Rapor Et
Eski 21 Mart 2011, 12:20

İçinde tel bulunan lamba nasıl ışık yayar? Kısaca açıklar mısınız ?

#15 (link)
Misafir
Ziyaretçi
Misafir - avatarı
İçinde tel bulunan bir lamba nasıl ışık yayar ? Kısaca açıklar mısınız?
Rapor Et
Eski 23 Mart 2011, 18:46

İçinde tel bulunan lamba nasıl ışık yayar ve telli lambaların sakıncaları var mıdır?

#16 (link)
Misafir
Ziyaretçi
Misafir - avatarı
içinde tel bulunan lamba nasıl çalışır kısa cevap lütfen
Rapor Et
Eski 9 Mayıs 2012, 16:56

Sensörü floresan lambaya nasıl bağlarım ?

#17 (link)
Misafir
Ziyaretçi
Misafir - avatarı
360 derecelik bir sensörü 3adet kablosu var mavi kahve kırmızı bunu floresan lambaya bağlamak istiyorum ama blast fln starter işi bozuyo bağlantısı nasıl yapılır biri yardımcı olkabilirmi?
Rapor Et
Cevap Yaz Yeni Konu Aç
İçinde tel bulunan lamba nasıl ışık yayar ve telli lambaların sakıncaları var mıdır? Konusuna Benzer Konular
Gönderen: iş adamı Forum: Soru-Cevap
Cevap: 7
Son Mesaj: 19 Mayıs 2014 11:36
Gönderen: Misafir Forum: Soru-Cevap
Cevap: 19
Son Mesaj: 16 Mart 2013 10:26
Gönderen: Misafir Forum: Soru-Cevap
Cevap: 26
Son Mesaj: 13 Kasım 2011 14:01
Gönderen: Misafir Forum: Soru-Cevap
Cevap: 0
Son Mesaj: 16 Aralık 2009 19:39
Gönderen: Ziyaretçi Forum: Cevaplanmış
Cevap: 2
Son Mesaj: 4 Aralık 2008 20:42
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.348 saniyede (87.22% PHP - 12.78% MySQL) 16 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +3 - Saat: 14:36
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi