Kojenerasyon Sistemler
Bileşik Isı-Güç Üretimi için Kullanılan Sistemler
Bileşik ısı-güç üretimi için kullanılan ısı makinaları şunlardır:
- Buhar türbinleri
- Gaz türbinleri
- Pistonlu motorlar
1. Buhar Türbinli Kojenerasyon Sistemleri
Buhar türbinli santrallar kuruluşun ısı isteminin, elektrik isteminden fazla olduğu durumlarda tercih edilmelidir. Şekil 4’de karşı basınçlı türbin uygulaması, Şekil 5’te ise ara buhar almalı türbin uygulaması gösterilmiştir. Şekillerde görüldüğü gibi bir kazanda üretilen buhar, türbinde genişleyerek iş (elektrik) üretir. Türbin çıkış basıncı proses için gerekli sıcaklığa karşı gelen doyma basıncıdır. Bu basınçta yoğuşan su buharı proses ısısını sağlar. Karşı basınçlı türbin, ısı ve elektrik istemlerinin zamanla ve birbirlerine oranla değişmediği durumlarda, ara buhar almalı türbin ise ısı gereksiniminin elektriğe göre değişken olduğu durumlarda seçilir. Belirli bir santral için üretilen elektrik ve ısı ile tüketilen enerji miktarları, çevrimin termodinamiğin birinci yasasına göre çözümlemesini yaparak elde edilebilir.
Diğer güç kaynaklarıyla karşılaştırıldığında, buhar türbinleri kullanmanın en önemli avantajı her zaman kullanılan yakıtlar kadar kömür, doğal gaz, benzin ve biomass gibi alternatif yakıtlarında bulunduğu bir çok seçenek sunmasıdır. Isı arzının optimize edilmesi için çevrimin güç üretim verimliliğinden fedakârlıkta bulunabilir. Ters basınçlı kojenerasyon santrallarında, büyük soğutma kulelerine ihtiyaç yoktur. Buhar türbinleri çoğunlukla elektrik talebinin 1 MW ile birkaç 100 MW arasında olduğu tesislerde kullanılır. Sistemin ataletine bağlı olmakla birlikte, kesintili enerji talebinin olduğu tesisler için uygun değillerdir.
Şekil. 4: Karşı basınçlı buhar turbineli bileşik ısı-güç santrali

Şekil. 5: Ana buhar almalı türbinli bileşik ısı-güç santrali
2. Gaz Türbinliİ Kojenerasyon Türbini
Gaz türbinli bir bileşik ısı-güç santralı Şekil 6’te gösterilmiştir. Görüldüğü gibi gaz türbininden çıkan sıcak gazlar bir atık ısı kazanında sıcak su veya buhar üreterek proses ısısını sağlamaktadır. Gaz türbinlerinin boyutları küçük, güç/ağırlık oranları yüksektir. Çabuk devreye girer ve bakımları kolaydır. Gaz türbinlerinde doğal gazın yanı sıra, LPG, nafta ve sıvı yakıtlar da yakılabilmektedir. Sıvı yakıtlar yakıldığında, yakıtın sodyum ve vanadyum tuzlarından arındırılması gerekir.
Gaz türbinleri kojenerasyon uygulamaları için yaygın olarak 5 – 30 MW güç aralığında kullanım bulmaktadır. Gaz türbinlerinde egzos gaz sıcaklıkları 430 oC ile 530 oC arasında olup, buhar üretimi için elverişlidir. Buna karşılık gaz motorları da daha küçük güçlerde, yurdumuzda da özellikle 1 MW seviyelerinde uygulanmaktadır. Ancak gaz motor kojenerasyon uygulamalarını bu boyutta sınırlamak doğru değildir. Seviyelerine ulaşılması avrupa'da yaygın uygulamalardır.
Şekil. 6: Gaz türbinli bileşik ısı güç santrali
Gaz türbinli kojenerasyon sistemleri, son yıllarda doğal gazın büyük çapta kullanılabilir olması, teknolojideki hızlı gelişme, tesis kurma maliyetinin önemli derecede azalması ve daha fazla çevre dostu formun da çalışmaya bağlı olarak büyük bir gelişme kaydetmiştir. Ayrıca, bir projenin geliştirilmesi için geçen süre daha aza inmiş ve donanımda modüler yolla gnderilebilir hale gelmiştir. Gaz türbinin çalışmaya başlangıç süresi kısadır ve kesintili işletme için esneklik sağlar. Düşük bir ısı değeri kazanım verimine sahip olmasına rağmen, daha yüksek derecelerde daha fazla ısı elde edilebilmektedir. Isı çıkışı kullanıcının ihtiyacından fazla ise, ek yakıtı oksijen yönünden zengin egzost gazıyla karıştırarak temel çıkışı daha verimli hale getirecek ek doğal gaz yapmak mümkündür.
Diğer bir yaygın kullanım alanı da egzos gazının hava ile karıştırılarak direkt kurutma aplikasyonlarında kullanılmasıdır. Bu işlemler sayesinde toplam çevrim verimi % 80 seviyelerini yakalayabilmektedir.
Şekil. 7: Gaz türbinli su borulu kazan kojenerasyon sistemi
3. Gaz Motorlu Kojenerasyon Sistemleri
Diesel (gaz) motorlu bir bileşik ısı-güç santralı Şekil 7’te gösterilmiştir. Proses ısısı için motorun egzos gazlarından ve soğutma suyundan yararlanılabilir. Gaz motorlu sistemlerin kapasiteleri genelde 1 ile 10 MW elektrik gücü arasındadır. Isıl verimlerinin yüksek olmaları, değişik yakıtlarla çalışabilmeleri Diesel veya gaz motorlarının kullanımını yaygınlaştırmıştır.
Şekil. 8: Diesel motorlu bileşik ısı-güç çevrimi
İçten yanmalı motorlar olarak bilinen bu kojenerasyon sistemleri, diğer güç kaynaklarıyla karşılaştırıldıklarında güç üretiminde daha verimlidirler. Isı geri kazanımı için iki ısı kaynağı vardır; yüksek sıcaklıktaki egzost gazı ve düşük sıcaklıktaki motor ceket soğutma suyu sistemi. Isı geri kazanımı daha küçük sistemler için oldukça verimli olabildiğinden, bu sistemler nispeten küçük enerji tüketim tesisleri, özellikle de elektrik ihtiyacı termal enerjiden daha fazla olan ve yüksek ısı kalitesinin gerekmediği yerlerde (örneğin düşük basınçlı buhar veya sıcak su) daha çok kullanılırlar.
Gaz motorlarında atık ısının yaklaşık 1/3 oranı egzos gazından 2/3 de motorun soğutma sistemlerinden geri kazanılmaktadır. Şekil 9` da görüleceği üzere soğutma devreleri; silindir-gömlek soğutması, karterdeki yağın soğutulması ve turbocharger soğutmasından oluşmaktadır. Buna egzos eşanjöründen elde edilen ısı eklenmektedir.
Motor kojenerasyon sistemlerinin bu soğutma gerekliliği özellikleriyle geri kazanılan ısı en verimli şekilde sıcak su olarak kullanılabilmektedir. Böyle bir sistemde toplam sistem verimi % 90 seviyesini geçebilmektedir.
Bu makineler kesintili çalışma için idealdir ve performansları çevre ısısındaki değişikliklere karşı gaz türbinleri kadar hassas değildir. Bu makinelerde yatırım düşük fakat, işletme ve bakım maliyetleri fazla aşınma nedeniyle yüksektir.
Resim 1 ve 2` de gördüğünüz üniteler kendi başlarına sadece elektrik üretebilecek durumdadırlar. Bu üniteleri kojenerasyon sistemi haline getirmek için dışarı atılan ısının kullanılır ısı haline dönüştürülmesi gerekmektedir. Gaz türbininde bu ısı egzos gazı ısısı şeklinde olup, bir atık ısı kazanı marifetiyle bu ısı proses ihtiyacına göre buhar, sıcak su, kızgın su ya da kızgın yağ üretmek için kullanılabilmektedir.
Resim 1: Gaz türbini ünitesi

Resim 2: Gaz motoru ünitesi
Gaz türbininin göreceli olarak ucuz olması, çabuk devreye girmesi ve ek yakma (auxiliary firing) ile ısı üretiminin artırılabilmesi, bu santralların giderek yaygınlaşmasına neden olmuştur. Diesel motoru, küçük çaplı uygulamalar, birleşik gaz buhar türbini (kombine çevrim) ise büyük çaplı uygulamalar için düşünülmelidir.
Çizelge 1. Değişik bileşik ısı güç sistemlerinin özellikleri ( pb = para birimi = 1 $)