Arama


kompetankedi - avatarı
kompetankedi
VIP Bir Dünyalı
19 Mart 2011       Mesaj #2
kompetankedi - avatarı
VIP Bir Dünyalı
NÜKLEER GÜÇ SANTRALI / REAKTÖRÜ NEDİR?
pwr
Nükleer Reaktörün Çalışma Sistemi

reaktor kalbi
Reaktör Kalbi
Bir nükleer santraldaki sistemler konvansiyonel güç santralları ile aynı mantıkla çalışırlar. Isı enerjisinin üretildiği kısımda elde edilen buharın türbin-jeneratörü döndürerek elektrik üretilmesi felsefesi, temel olarak nükleer santrallarda da aynıdır. Nükleer santrallar ısı üretmek için nükleer reaksiyonu kullandıkları ve bunun sonucunda çevreye salınmaması gereken radyoaktif maddeler ürettikleri için, bazı ek sistemler kullanırlar. Örneğin, bir çok nükleer santralda nükleer yakıtı barındıran yakıt tüpleri arasından ısınarak geçen su, doğrudan türbine gönderilmeyip, türbin için buhar üretilen ikinci bir çevrimi ısıtmak için kullanılır. Bununla ilgili sistemlere Birincil (Soğutma) Sistem(i) adı verilir. İkincil sistem ise birincil soğutma sistemindeki ısıyı alarak türbin-jeneratörü döndürmek için gerekli olan buharın üretilmesi için kullanılan sistemdir. Her iki sistem de kapalı birer döngü oluşturmuşlardır.
Aşağıdaki şekilde görülen sistem, tipik bir "basınçlı su reaktörü"ne aittir.
ngs1. Reaktör kalbi (reactor core) 2. Kontrol çubuğu (control rod) 3. Reaktör basınç kabı (pressure vessel) 4. Basınçlandırıcı (pressurizer) 5. Buhar üreteci (steam generator) 6. Birincil soğutma su pompası (primary coolant pump) 7. Reaktör korunak binası (containment) 8. Türbin (turbine) 9. Jeneratör - Elektrik üreteci (generator) 10. Yoğunlaştırıcı (condenser) 11. Besleme suyu pompası (feedwater pump) 12. Besleme suyu ısıtıcısı (feedwater heater)
Nükleer Reaktör Soğutma Sistemi
Nükleer santrallar, birincil sistemlerindeki farklılıklara göre değişik şekillerde adlandırılırlar. Dünyadaki 400 den fazla sayıda nükleer santralın yaklaşık olarak yarısı "basınçlı su reaktörü"dür. Basınçlı su reaktörlerininde, birincil sistem yaklaşık 150 atmosferlik bir basınç altında tutularak, içinde bulunan suyun yüksek sıcaklıklara kaynamadan çıkarılması sağlanmıştır. Buna ek olarak "kaynar sulu", "basınçlı ağır sulu" reaktörler de en çok kullanılan nükleer santral tipleridir.
ELEKTRİK NASIL ÜRETİLİR?
elektrikElektrik, bakır gibi iletken bir telin manyetik bir alan içinde hareket ettirilmesi ile üretilir. Elektrik jeneratörü, bir mıknatıs içinde dönen sarılı iletken tellerin bulunduğu, ve bu tellerin mıknatıs içinde dönmesiyle elektrik akımı üreten bir makinadır. Evlerimizde, işyerlerimizde, endüstride gereksinim duyduğumuz büyük miktardaki elektrik enerjisini elde etmek için, elektrik jeneratörlerini döndürecek büyük güç santrallarına ihtiyaç duyarız.

Çoğu güç santralı, jeneratörü döndürmek için ısı üretiminde bulunurlar. Fosil yakıtlı santrallar ısı üretimi için doğal gaz, kömür ve petrol yakarlar. Nükleer santrallar da uranyum yakıtını parçalayarak ısı üretirler. Ancak bütün bu değişik tip santrallar ürettikleri ısıyı, suyu buhar haline dönüştürmek için kullanırlar.elektrik2
Oluşan buhar ise elektrik jeneratörüne bağlı olan türbine verilir. Su buharı, türbin şaftı üzerinde bulunan binlerce kanatçık üzerinden geçerken daha önce üretilen ısıdan almış olduğu enerjiyi kullanarak, türbin şaftını döndürür. İşte bu dönme, jeneratörün elektrik üretmek için gereksinim duyduğu mekanik harekettir. Jeneratörde oluşan elektrik ise iletim hatları denilen iletken teller ile kullanılacağı yere gönderilir.
Türbinden çıkan, enerjisi diğer bir deyişle basınç ve sıcaklığı azalmış buhar ise yoğunlaştırıcı (kondenser) denilen bölümde soğutulup su haline dönüştürüldükten sonra, tekrar kullanılmak üzere santralın ısı üretilen bölümüne geri gönderilir. Yoğunlaştırıcıda soğutma işini sağlayabilmek için deniz, göl veya ırmaklarda bulunan su kullanılır. Su kaynaklarından uzak bölgelerde ise santralın hemen yanında bulunan ve uzaktan bakıldığı zaman geniş dev bacalara benzeyen soğutma kuleleri kullanılır. Bu kulelerin üzerinde görülen beyaz duman ise su buharıdır.
elektrik3
Soğutma Kuleleri
Elektrik üretmek için kullanılan diğer bir yöntem ise hidrolik santrallardır. Bu yöntem ile barajlarda biriktirilen su, bir su türbinini üzerinden geçirilir ve türbine bağlı elektrik jeneratörü döndürülerek elektrik üretilir.
Yukarda bahsedilen bu yöntemler büyük miktarlarda elektrik enerjisini üretmek için kullanılırlar. Bunların yanı sıra rüzgar, güneş ve jeotermal enerji kullanarak da elektrik üretilmektedir. Ancak bu tür kaynaklardan üretilen enerji miktarı asıl ihtiyacımızı kendi başına karşılamaktan uzaktır.
Su, güneş, rüzgar ve geotermal kaynaklara, yenilenebilir enerji kaynakları denir. Bu kaynaklar diğerleri gibi tükenmezler. Petrol, doğal gaz, kömür, uranyum gibi maddeler önümüzdeki birkaç yüzyıl içinde tükenecektir.
NÜKLEER YAKIT KONUSUNDA DIŞA BAĞIMLI OLACAK MIYIZ? YERLİ KAYNAKLARIMIZ NELERDİR?
Nükleer yakıt olarak kullanılan uranyum yakıt teknolojisi pek çok ülkede mevcuttur. Yerli kaynaklarımızdan uranyumun (yaklaşık 9000 ton) günümüz koşullarında yakıt olarak kullanılması, dünya piyasalarıyla karşılaştırıldığında, ekonomik gözükmemektedir. Ayrıca, ülkemizde 380.000 ton toryum bulunmaktadır. Ancak mevcut rezervin tenör ortalaması düşüktür (yaklaşık %0,2). Günümüzde toryum tabanlı yakıt çevrimi ticari olarak kullanılmamaktadır. Bu nedenle ülkemizde bulunan toryum kaynağının ekonomikliğinin değerlendirilmesi çok kolay değildir. Ayrıca uranyum fiyatlarının günümüzde düşük seyretmesi (yaklaşık 25 $/kgU) halen uranyuma olan talebin devamını kaçınılmaz kılmaktadır. Unutulmaması gereken bir diğer husus da toryumun tek başına fisil madde, yani nükleer yakıt, olmamasıdır. Diğer bir deyişle, toryum doğrudan nükleer yakıt olarak kullanılamaz ve bir tetikleyiciye gereksinimi vardır. U235 veya Pu239 ile birlikte kullanıldığında toryum kaynak maddesinden nötron - Th232tepkimesini sonucunda U233 fisil maddesi üretilebilir) Ekonomikliği bugün için sorgulansa bile uranyum ve toryum yerli kaynaklarımızın varlığı gelecekte nükleer enerji kullanımında ülkemiz için bir güvencedir. Ancak, nükleer enerjide yakıt maliyetinin toplam üretim maliyeti içindeki yerinin çok az (yaklaşık %10-12) olduğu ve dünyadaki uranyum stoklarının ve rezervin fazlalığı nedeniyle görünür gelecekte yakıt maliyetinde fazla bir değişimin beklenmediği gerçeği de göz ardı edilmemelidir. Ayrıca, nükleer santralların bir özelliği de taze yakıtın kolayca depolanabilmesidir. Böylelikle uzun süre yakıt üreticilerine bağlı kalmadan enerji üretimi mümkündür.
NÜKLEER REAKTÖRLER ENERJİ DIŞINDA BİR ŞEY ÜRETİR Mİ?
seraNükleer reaktörler, tıp ve endüstride kullanılan yararlı radyoizotopların üretilmesinde de kullanılırlar. Kanser tedavisinde, boru kaynaklarının tahribatsız muayenesinde kullanılan Kobalt60, Tiroid bozukluklarının teşhis ve tedavisinde kullanılan İyot131, doktorların vücut içini görme amacıyla kullandıkları çeşitli tarayıcı cihazlarda kullanılan Teknesyum99, akciğer havalanmasının ve kan akışının ölçülmesinde yararlanılan Ksenon133 bu izotoplara örnek olarak verilebilir.
Nükleer santrallarda elde edilen fazla enerji ise, ev ve seralarımızın ısıtılması, tuzlu sudan içilebilir su elde edilmesi, petrol üretimi gibi alanlarda kullanılmaktadır.