Arama

Güneş (Uzay) - Tek Mesaj #16

Safi - avatarı
Safi
SMD MiSiM
29 Mart 2016       Mesaj #16
Safi - avatarı
SMD MiSiM
Ad:  güneşin yapısı.jpg
Gösterim: 439
Boyut:  22.7 KB
GÜNEŞ'İN YAPISI VE İŞLEVİ

Kütlece %74 kadarı hidrojen, %25 kadarı helyum, kalanı da daha ağır elementlerden oluşan Güneş, tümüyle ne katı, ne sıvı, ne de gaz. Gaz atomlarının yeterince yüksek sıcaklıklarda iyonlaşmalarıyla oluşan ve maddenin dördüncü hali olarak tanımlanan "plazma" yapısında. Maddenin plazma halinde atomlar, serbest elektronlar ve iyonlara ayrışır. Maddeyi bu hale getiren yüksek sıcaklık, yüksek voltaj ya da yüksek basınçtır. Milyonlarca derecedeki bir sıcaklık, çekirdek çevresinde dolanan elektronları hızlandırır. Elektronlar öyle hızlanır ki, protonların çekim etkisinden kurtulurlar. Güneş'te plazma, yüzeye yakın bölgelerde seyrek ve gazsı özellikteyken, merkeze yakınlaştıkça yoğunlaşıyor.

Güneş'in yüzeyi yoktur. Atmosferi incelerek Dünya'ya ve daha ötelere uzanıyor. Elektromanyetik etkinlik açısından Güneş, tam bir karmaşa. Dünya'da elektrik ileten madde sayısı çok az. Güneş'te ise nötr atomlarının uyarılması nedeniyle hemen her şey çok iletken. Çok güçlü ısı ve ışınım enerjileri, elektronları atomlarından kaçabilecekleri noktaya kadar uyarıp, pozitif(+) yüklü çekirdekler ile serbest negatif elektronlardan oluşan, foku fokur kaynayan bir çorba meydana getiriyor. Yani elektrik akımını bakır tel kadar kolay iletebilen ve gazsı bir karışım olan plazma.


kaynak: Bilim ve Teknik
Elektrik yüklü her nesne gibi plazma da hareket ettiğinde, manyetik alanlar üretiyor. Bu alanlar yön değiştirdikçe, daha fazla akım oluşuyor. Sonuçta bu da, daha fazla manyetik alan meydana getiriyor.

GÜNEŞ'İN ÇEKİRDEĞİ(MERKEZİ)
Ad:  gçekird.jpg
Gösterim: 1239
Boyut:  63.2 KB

Merkez (çekirdek) bölümü, Güneş'in yakıt kazanı; tüm enerjisinin üretildiği yer. Yarıçapı, Güneş'in yarıçapının ¼ 'ü kadar. Sıcaklığı, yaklaşık 15 milyon °C. İçerdiği malzeme de, çok sıkı paketlenmiş; yani çok yoğun durumda. Böylesine yüksek sıcaklık ve yoğunluksa, nükleer tepkimelerin gerçekleşmesi için ideal koşulları sağlıyor. Yüksek ısıya maruz atomlar yapılarını koruyamayıp bileşenlerine; proton, nötron ve elektronlarına parçalanıyorlar. Nötronlar, yüksüz olmaları nedeniyle, çevre atomlarla fazla etkileşime girmeden, merkezden hızlı bir biçimde "sıvışırken", (+) yüklü protonlarla (-) yüklü elektronlar merkezde kalıp, Güneş'e enerji üretecek tepkimeleri(reaksiyonları) gerçekleştiriyorlar. Yüksek sıcaklıkla fitilleri ateşlenmiş, yani gerekli ısı enerjisiyle donanmış bu kazan dairesi işçileri, sağa sola koşturup, birbirleriyle çarpışmaya başlıyorlar. Tabii yüksek yoğunluk ortamı bu işi kolaylaştırıyor. Farklı parçacıkların, farklı kombinasyonlarla çarpışıp birleşmeleriyle gerçekleşen nükleer "füzyon tepkimelerinin" sonucunda enerji oluşuyor.

GÜNEŞ'TE ÇEKİRDEK KAYNAŞMASI(FÜZYON)
Tüm yıldızlar gibi Güneş de, kütle çekiminin etkisiyle sürüklenen gaz ve tozların girdap halinde dönerek bir küre oluşturmasıyla meydana geldi. Kütle gittikçe büyürken, merkezdeki hidrojen çok büyük bir basınçla sıkışır. Sonunda, hidrojen çekirdeklerinin bir araya gelerek, çok aşamalı bir tepkimede helyuma dönüşeceği bir füzyon tepkimesini tetikler. Ortaya çıkan çekirdekler, onları oluşturan birleşimdeki hidrojen çekirdeklerinden daha az kütleye sahiptir. Bu kütle farkı, Einstein'ın ünlü; E = mc2 formülüne göre enerjiye dönüşüyor.

Bu enerjinin büyük bölümü, gamma ışınları biçiminde ışık olarak taşınıyor. Ki bu, elektromanyetik ışınımın en şiddetli dalga boyudur. Ancak, Güneş'in çekirdeğinin yoğun olması nedeniyle fotonlar, atomlara çarparak saçılıyor ya da soğuruluyor ve yeniden yayılıyor. Foton, Güneş yüzeyine ulaşana dek geçmesi gereken 700.000 kilometrelik yolda ilerlerken o kadar çok enerji harcıyor ki; büyük bölümü görünür ışık olarak adlandırdığımız oldukça önemsiz bir ışınım olarak açığa çıkıyor. Nitekim merkezin hemen üzerindeki bölgede; (Güneş yarıçapının içten dışa doğru % 25'lik kısmından başlayıp, % 85'lik kısmına kadarki bölge), ışınım bölgesi(radiation zone) olarak adlandırılıyor. Bu bölgenin sıcaklığı, merkeze göre daha düşük; ortalama 5 milyon °C kadar.

1950'li yıllarda füzyon modeli doğrulanmıştır. Ancak füzyon sürecinde üretilen ve nötrino denilen, atomdan daha küçük hayaletimsi parçacıklar daha sonra fark edilmiştir. Araştırmacıların onlarca yıl süren araştırmalarına göre, her gün Dünya 'ya çarpması gerektiği öngörülen nötrino miktarının, yalnızca üçte birini saptayabiliyorlardı. Sonunda üç yıl önce, Japonya ve Kanada'daki tesisleri de içeren uluslararası düzeyde dikkate değer bir çaba gösterildi. Ve kayıp nötrinoların, mutasyon geçirip farklı türlere dönüştüğü kanıtlanarak problem çözüldü.
BEĞEN Paylaş Paylaş
Bu mesajı 1 üye beğendi.
SİLENTİUM EST AURUM