Arama

Polinomlar - Tek Mesaj #1

Mystic@L - avatarı
Mystic@L
Ziyaretçi
18 Şubat 2007       Mesaj #1
Mystic@L - avatarı
Ziyaretçi
Polinomlar
MsXLabs.org

A. TANIM
n bir doğal sayı ve a0, a1, a2, ... , an – 1, an birer gerçel sayı olmak üzere,

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn

biçimindeki ifadelere x değişkenine bağlı, gerçel (reel) katsayılı n. dereceden polinom (çok terimli) denir.

B. TEMEL KAVRAMLAR

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn
olmak üzere,

Ü a0, a1, a2, ... , an–1, an in her birine polinomun terimlerinin katsayıları denir.
Ü a0, a1x, a2x2, ... , an–1xn – 1, anxn in her birine polinomun terimleri denir.
Ü Polinomun terimlerinden biri olan a2x2 teriminde x in kuvveti olan 2 ye bu terimin derecesi denir.

Ü Polinomu oluşturan terimler içerisinde derecesi en büyük olan terimin katsayısına polinomun baş katsayısı, bu terimin derecesine de polinomun derecesi denir ve der [p(x)] ile gösterilir.

Ü Değişkene bağlı olmayan terime polinomun sabit terimi denir.

Ü a0 = a1 = a2 = ... = an = an–1 = 0 ise, P(x) polinomuna sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.

Ü a0 ¹ 0 ve a1 = a2 = a3 = ... an – 1 = an = 0 ise, P(x) polinomuna sabit polinom denir. Sabit polinomunun derecesi sıfırdır.

rxm8

C. ÇOK DEĞİŞKENLİ POLİNOMLAR

P(x, y) = 3xy2 – 2x2y – x + 1
biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun derecesi denir.

D. POLİNOMLARDA EŞİTLİK
Aynı dereceli en az iki polinomun eşit dereceli terimlerinin katsayıları birbirine eşit ise bu polinomlara eşit polinomlar denir.
Ü P(x) polinomunun katsayıları toplamı P(1) dir.
Ü P(x) polinomunda sabit terim P(0) dır.

ka3x

Ü P(x) polinomunun;
Çift dereceli terimlerinin katsayıları toplamı:
matka1901
Tek dereceli terimlerinin katsayıları toplamı:
matka1902

E. POLİNOMLARDA İŞLEMLER


1. Toplama ve Çıkarma
P(x) = anxn + an – 1xn – 1 + an – 2xn – 2 + ...

Q(x) = bnxn + bn – 1xn – 1 + bn – 2xn – 2 + ...
olmak üzere,

P(x) + Q(x) = (an + bn)xn + (an – 1 + bn–1)xn – 1 + ...

P(x) – Q(x) = (an – bn)xn + (an – 1 – bn–1)xn – 1 + ...
olur.

2. Çarpma
İki polinomun çarpımı, birisinin her bir teriminin diğerinin her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimlerin toplamına eşittir.

3. Bölme
der [P(x)] ³ der [Q(x)] ve Q(x) ¹ 0 olmak üzere,
cep mat214
P(x) : Bölünen polinom
Q(x) : Bölen polinom
B(x) : Bölüm polinom
K(x) : Kalan polinomdur.

Ü P(x) = Q(x) . B(x) + K(x)
Ü der [K(x)] < der [Q(x)]
Ü K(x) = 0 ise, P(x) polinomu Q(x) polinomuna tam bölünür.
Ü der [P(x)] = der [Q(x)] + der [B(x)]
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer biçimde yapılır.

Bunun için;
  1. Bölünen ve bölen polinomlar x in azalan kuvvetlerine göre sıralanır.
  2. Bölünen polinom soldan ilk terimi, bölen polinomun ilk terimine bölünür.
  3. Bulunan bu bölüm, bölen polinomun bütün te-rimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek biçimde bölünen polinomun altına yazılır.
  4. Bulunan sonuç, bölünen polinomdan çıkarılır. Fark polinomuna da aynı işlem uygulanır.
  5. Yukarıdaki işlemlere, kalan polinomun derecesi bölen polinomun derecesinden küçük oluncaya kadar devam edilir.
F. KALAN POLİNOMUN BULUNMASI
Kalan polinomu, klasik bölme işlemiyle ya da aşağıdaki 3 yöntemden biri ile bulabiliriz.

1. Bölen Birinci Dereceden İse
Bir polinomun ax + b ile bölümünden kalanı bulmak için, polinomda değişken yerine cep ma215 yazılır.
  • P(x) in x – b ile bölümünden kalan P(b) dir.
  • P(mx + n) nin ax + b ile bölümünden kalan
cep ma216
2. Bölen Çarpanlara Ayrılıyorsa
Bölen çarpanlara ayrılıyorsa, her çarpan sıfıra eşitlenir. Bulunan kökler polinomda yazılarak kalan bulunur.

P(x) polinomunun a(x – b) . (x – c) ye bölümünden kalan mx + n ve bölüm polinom Q(x) ise,

P(x) = a(x – b) . (x – c) . Q(x) + mx + n olur.

P(b) = mb + n ... (1)

P(c) = mc + n ... (2)

(1) eşitliği ile (2) eşitliğinin ortak çözümünden m ve n bulunur.

8agb

3. Bölen Çarpanlarına Ayrılamıyorsa
Bölen çarpanlarına ayrılamıyorsa aşağıdaki 2 yöntem sırasıyla uygulanarak kalan polinom bulunur.

1) Bölen polinom sıfıra eşitlenerek en büyük dereceli değişkenin eşiti bulunur.

2) Bulunan ifade bölünen polinomda yazılır.
  • P(x) polinomunun ax2 + bx + c ile bölü-münden kalanı bulmak için P(x) polinomunda x2 yerine yazılır.
4. P(x) Polinomu (ax + b)n İle Tam Bölünüyorsa, (n Î N+)
cep ma217
7yk9

G. BASİT KESİRLERE AYIRMA
a, b, c, d, e, f A, B birer reel (gerçel) sayı olmak üzere,

cep ma218

eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.

cep ma219
Bulunan bu değer eşitliğin sol yanında A nın paydası atılarak elde edilen
cep ma220 de yazılır.

Aynı işlemler B için de yapılır.

cep ma221

H. DERECE İLE İLGİLİ İŞLEMLER

m > n olmak üzere,
der[P(x)] = m
der[Q(x)] = n olsun.

Buna göre,
  1. der[P(x) ± Q(x)] = m tir.
  2. der[P(x) . Q(x)] = m + n dir.
  3. P(x) in Q(x) ile bölümünden elde edilen bölüm B(x) ise, der[B(x)] = m – n dir.
  4. k Î N+ için der[Pk(x)] = k . m dir.
  5. der[P(kx)] = m, k ¹ 0 dır.
Son düzenleyen _Yağmur_; 1 Ekim 2013 10:16 Sebep: Sayfa düzeni