Arama

Kütlenin korunumu yasası hakkında bilgi verir misiniz?

En İyi Cevap Var Güncelleme: 21 Aralık 2011 Gösterim: 6.230 Cevap: 3
Misafir - avatarı
Misafir
Ziyaretçi
14 Ekim 2010       Mesaj #1
Misafir - avatarı
Ziyaretçi
kimya
kütlenin korunumu lovoisier kanunu
EN İYİ CEVABI Efulim verdi
Alıntı
Misafir adlı kullanıcıdan alıntı

kimya
kütlenin korunumu lovoisier kanunu

Kütlenin Korunumu Yasası (Lavoisier Kanunu)
Sponsorlu Bağlantılar
Vikipedi, özgür ansiklopedi

Kütlenin korunumu yasası, zaman zaman Lomonosov-Lavoisier kanunu olarak da adlandırılan, kapalı bir sistemde var olan çevrimler ve işlemler ne olursa olsun, kütlenin sabit kalacağını belirten kanundur. Denk bir ifadeyle açıklamak gerekirse kütlenin durumu yeniden düzenlenebilir fakat kütle yaratılamaz veya yok edilemez. Böylece, kapalı bir sistem dahilindeki her türlü kimyasal tepkime ve proseste tepkenlerin (yani reaktantların) kütlesi, ürünlerin kütlesine eşit olmalıdır.
Buna göre:
Kimyasal olaylara giren maddelerin kütleleri toplamı oluşan ürünlerin toplamına eşittir. X + Y ® Z + T tepkimesinde X ve Y girenler (reaktif) olup, Z ve T (ürünler)’ye kütlece eşittir.
Kimyasal maddelerin kütleleri atom sayıları ile orantılı olduğundan tüm kimyasal tepkimelerde atom sayıları korunur.
Örneğin 1 mol C atomu 12 gram, 1 mol O2 molekülü 32 gramdır. Buna göre 1 mol CO2 atomu 44 gram olur:
C + O2 ® CO2
12 gram + 32 gram ® 44 gram
Tarihçe
Kütlenin korunumu kanunun ilk kez Nasîrüddin Tûsî tarafından 13. yüzyıl ortaya atılmışsa da bu ilk sürümde eksiklikler mevcuttu; Maddenin yapısının değişebileceğini fakat yok olamayacağını yazmaktaydı.
Kütlenin korunumu kanunun ilk kez net bir şekilde tanımlanması 1789 tarihinde Lavoisier tarafından başarılabilmiştir. Nitekim bu sebepten ötürü bazen kendisinin modern kimyanın babası olduğu da söylenir. Bununla birlikte, Mikhail Lomonosov aslında benzeri fikirleri 1748'de ortaya atmış ve çeşitli deneyler sonucu kanıtlamıştı. Lavoisier'in çalışmasının öncülleri bununla da sınırlı değildir ve şu isimler daha erken tarihlerde benzeri fikirleri ortaya atmıştır: Joseph Black (1728 - 1799), Henry Cavendish (1731 - 1810) ve Jean Rey (1583 - 1645).

Flogiston Teoremi
Lavoisier bilim dünyasında en başta yanma olayına ilişkin geliştirdiği yeni kuramıyla ün kazanır. Ne ki, kimya devrimini oluşturmada başka önemli çalışmaları da vardır. Ayrıca, deneylerinde, özellikle ölçme işleminde gösterdiği olağanüstü duyarlılık, kendisini izleyen yeni kuşak araştırmacılar için özenilen bir örnek olmuştur. Kimya dil, mantıksal düzen ve kuramsal açıklama yönlerinden bilimsel kimliğini Lavoisier'e borçludur. Tüm bu çalışmalarında ona büyük desteği eşi sağlar: deney şekillerini çizer, yabancı dillerden kaynak çeviriler yapar, makale ve kitaplarını yayıma hazırlar.
Lavoisier araştırmalarına başladığında, kimyada Antik Yunanlıların maddeye ilişkin dört element (toprak, su, ateş ve hava) öğretisinin yanı sıra yanmaya ilişkin flogiston kuramı geçerliydi. Bilindiği gibi, bir tahta ya da bez parçası yandığında duman ve alev çıkar, yanan nesne bir miktar kül bırakarak yok olur.
Yürürlükteki kurama göre, yanma, yanan nesnenin flogiston denen, ama ne olduğu bilinmeyen, gizemli bir madde çıkarması demekti. Odun kömürü gibi yandığında geriye en az kül bırakan nesneler flogiston bakımından en zengin nesnelerdi. Bilim adamlarının çoğunluk doyurucu bulduğu bu kurama ters düşen kimi gözlemler de yok değildi. Bunlardan biri yanma için havanın gerekliliğiydi. Bir diğeri, kurşun gibi madenlerin, erime derecesinde ısıtıldığında, yüzeylerinde oluşan "calx"ın, madenin eksilen bölümünden daha ağır olmasıydı. Aslında yanma olayını açıklamadaki güçlüğün bir nedeni gazlara ilişkin bilgi eksikliğiydi. 1756'da İskoçJoseph Black "sabit gaz" dediği karbon dioksidi buluncaya dek bilinen tek gaz hava idi. İngiliz kimya bilgini Joseph Priestley daha sonra deneysel olarak on kadar yeni gaz keşfeder. Bunlardan biri onun "yetkin gaz" dediği, ilerde Lavoisier'in "oksijen" adını verdiği gazdır.
Priestley, oksijeni bulmasına karşın flogiston kuramından kopamaz. Üstün bir deneyci olan bu İngiliz bilim adamı, kuramsal yönden rakibi Lavoisier ile boy ölçüşecek yeterlikte değildi. Lavoisier yanma olayı ile 1770'lerin başında ilgilenmeye başlamıştı. Kapalı bir kapta fosfor yakınca gazın ağırlığının değişmediğini, oysa kabı açtığında havanın içeri girmesiyle birlikte gazın ağırlığının az da olsa arttığını saptamıştı. Bu gözlemin yürürlükteki kurama uymadığı belliydi, ama daha doyurucu bir açıklaması da yoktu.

Kütlenin Korunumu Kanunu
Lavoisier aradığı açıklamanın ipucunu bir kaç yıl sonra Priestley'le Paris'te buluştuğunda elde eder. Priestley cıva oksit üzerindeki deneylerinden söz ederken bulduğu "yetkin gaz"ın özelliklerini belirtir. Lavoisier yayınlarının hiç birinde Priestley'e hakkı olan önceliği tanımaz; sadece bir kez, "Oksijeni Priestley'le hemen aynı zamanda keşfetmiştik," demekle yetinir.
Doğrusu, oksijenin keşfinde öncelik Lavoisier'in değildi; ama bu gazın gerçek önemim ilk kavrayan bilim adamı oydu. Priestley'in deneylerini kendine özgü dikkat ve özenle tekrarlamaya koyulur. Belli miktarda havaya yer verilen bir kapta cıva ısıtıldığında, cıvanın kırmızı cıva okside dönüşmesiyle ağırlık kazandığı, havanın ise aynı ölçüde ağırlık yitirdiği görülür. Lavoisier deneylerinde bir adım daha ileri gider: cıvadan ayırdığı cıva oksidi (calx'ı) tarttıktan sonra daha fazla ısıtır; kora dönüşen kırmızı oksidin giderek yok olmaya yüz tuttuğunu, geriye belli sayıda cıva taneciğiyle, solunum ve yanma sürecinde atmosferik havadan daha etkili bir miktar "elastik akıcı" kaldığını saptar. Elastik akıcı Priestley'in "yetkin gaz" dediği şeydi.
Lavoisier üstelik bu artığın ağırlığı ile cıvanın ilk aşamadaki ısıtılmasından azalan hava ağırlığının da eşit olduğunu belirler. Dahası, cıva oksidin ısı altında cıvaya dönüşmesiyle kaybettiği ağırlık etkili bölümüyle (yani oksijenle) birleşmesiyle gerçekleşmektedir. Başta önemsenmeyen bu kuram, suyun iki gazın birleşmesiyle oluştuğuna ilişkin Cavendish deney sonuçlarını da açıklayınca, bilim çevrelerinin dikkatini çekmede gecikmez. Cavendish deneylerinde, asitlerin metal üzerindeki etkisinden "yanıcı" dediği bir gaz elde etmiş, bunu flogiston sanmıştı. Ancak Priestley'in bir deneyi onu bu yanlış yorumdan kurtarır. Priestley, hidrojen ve oksijen karışımı bir gazı elektrik kıvılcımıyla patlattığında bir miktar çiyin oluştuğunu görmüştü. Aynı deneyi tekrarlayan Cavendish daha ileri giderek patlamada "yanıcı" gazınsu olduğunu saptar.
Flogiston teorisi yıkılmıştı artık. Yeni teorinin benimsenmesi, kimi bağnaz çevrelerin direnmesine karşın, uzun sürmez. Kimyada geciken atılım sonunda gerçekleşmiş olur. Lavoisier ulaştığı sonucu Bilim Akademisi'ne bir bildiriyle sunar; ne var ki, tek kelimeyle de olsa Priestley, Cavendish, vb. deneycilerin katkılarından söz etmez. Lavoisier'in aslında ne yeni kimyasal bir nesne, ne de yeni kimyasal bir olgu keşfettiği söylenebilir.yeni ve işler bir sistem kurmaktı. 1789'da yayımlanan "Traité Élémentaire de Chimie" adlı yapıtı, kendi alanında, Newton'un Principia'sı sayılsa yeridir. Biri modern fiziğin, diğeri modern kimyanın temelini atmıştır.
Lavoisier'i unutulmaz yapan bir özelliği de nesnelerin kimyasal değişimlerini ölçmede gösterdiği olağanüstü duyarlılıktı. Bu özelliği ona "Kütlenin Korunumu Yasası" diye bilinen çok önemli bilimsel bir ilkeyi ortaya koyma olanağı sağlar. Lavoisier kimi kez kendi adıyla da anılan bu ilkeyi şöyle dile getirmişti:
"Doğanın tüm işleyişlerinde hiç bir şeyin yoktan var edilmediği, tüm deneysel dönüşümlerde maddenin miktar olarak aynı kaldığı, elementlerin tüm bileşimlerinde nicel ve nitel özelliklerini koruduğu gerçeğini tartışılmaz bir aksiyom olarak ortaya sürebiliriz."
Genelleştirme
Özel görelilikte kütlenin korunumu mevcut değildir. Nitekim bir parçacık sisteminin kütlesinin, her bir parçacığın kütlelerinin toplamına eşit olduğu prensibi de özel görelilikte doğru değildir.


Efulim - avatarı
Efulim
VIP VIP Üye
27 Temmuz 2011       Mesaj #2
Efulim - avatarı
VIP VIP Üye
Bu mesaj 'en iyi cevap' seçilmiştir.
Alıntı
Misafir adlı kullanıcıdan alıntı

kimya
kütlenin korunumu lovoisier kanunu

Kütlenin Korunumu Yasası (Lavoisier Kanunu)
Sponsorlu Bağlantılar
Vikipedi, özgür ansiklopedi

Kütlenin korunumu yasası, zaman zaman Lomonosov-Lavoisier kanunu olarak da adlandırılan, kapalı bir sistemde var olan çevrimler ve işlemler ne olursa olsun, kütlenin sabit kalacağını belirten kanundur. Denk bir ifadeyle açıklamak gerekirse kütlenin durumu yeniden düzenlenebilir fakat kütle yaratılamaz veya yok edilemez. Böylece, kapalı bir sistem dahilindeki her türlü kimyasal tepkime ve proseste tepkenlerin (yani reaktantların) kütlesi, ürünlerin kütlesine eşit olmalıdır.
Buna göre:
Kimyasal olaylara giren maddelerin kütleleri toplamı oluşan ürünlerin toplamına eşittir. X + Y ® Z + T tepkimesinde X ve Y girenler (reaktif) olup, Z ve T (ürünler)’ye kütlece eşittir.
Kimyasal maddelerin kütleleri atom sayıları ile orantılı olduğundan tüm kimyasal tepkimelerde atom sayıları korunur.
Örneğin 1 mol C atomu 12 gram, 1 mol O2 molekülü 32 gramdır. Buna göre 1 mol CO2 atomu 44 gram olur:
C + O2 ® CO2
12 gram + 32 gram ® 44 gram
Tarihçe
Kütlenin korunumu kanunun ilk kez Nasîrüddin Tûsî tarafından 13. yüzyıl ortaya atılmışsa da bu ilk sürümde eksiklikler mevcuttu; Maddenin yapısının değişebileceğini fakat yok olamayacağını yazmaktaydı.
Kütlenin korunumu kanunun ilk kez net bir şekilde tanımlanması 1789 tarihinde Lavoisier tarafından başarılabilmiştir. Nitekim bu sebepten ötürü bazen kendisinin modern kimyanın babası olduğu da söylenir. Bununla birlikte, Mikhail Lomonosov aslında benzeri fikirleri 1748'de ortaya atmış ve çeşitli deneyler sonucu kanıtlamıştı. Lavoisier'in çalışmasının öncülleri bununla da sınırlı değildir ve şu isimler daha erken tarihlerde benzeri fikirleri ortaya atmıştır: Joseph Black (1728 - 1799), Henry Cavendish (1731 - 1810) ve Jean Rey (1583 - 1645).

Flogiston Teoremi
Lavoisier bilim dünyasında en başta yanma olayına ilişkin geliştirdiği yeni kuramıyla ün kazanır. Ne ki, kimya devrimini oluşturmada başka önemli çalışmaları da vardır. Ayrıca, deneylerinde, özellikle ölçme işleminde gösterdiği olağanüstü duyarlılık, kendisini izleyen yeni kuşak araştırmacılar için özenilen bir örnek olmuştur. Kimya dil, mantıksal düzen ve kuramsal açıklama yönlerinden bilimsel kimliğini Lavoisier'e borçludur. Tüm bu çalışmalarında ona büyük desteği eşi sağlar: deney şekillerini çizer, yabancı dillerden kaynak çeviriler yapar, makale ve kitaplarını yayıma hazırlar.
Lavoisier araştırmalarına başladığında, kimyada Antik Yunanlıların maddeye ilişkin dört element (toprak, su, ateş ve hava) öğretisinin yanı sıra yanmaya ilişkin flogiston kuramı geçerliydi. Bilindiği gibi, bir tahta ya da bez parçası yandığında duman ve alev çıkar, yanan nesne bir miktar kül bırakarak yok olur.
Yürürlükteki kurama göre, yanma, yanan nesnenin flogiston denen, ama ne olduğu bilinmeyen, gizemli bir madde çıkarması demekti. Odun kömürü gibi yandığında geriye en az kül bırakan nesneler flogiston bakımından en zengin nesnelerdi. Bilim adamlarının çoğunluk doyurucu bulduğu bu kurama ters düşen kimi gözlemler de yok değildi. Bunlardan biri yanma için havanın gerekliliğiydi. Bir diğeri, kurşun gibi madenlerin, erime derecesinde ısıtıldığında, yüzeylerinde oluşan "calx"ın, madenin eksilen bölümünden daha ağır olmasıydı. Aslında yanma olayını açıklamadaki güçlüğün bir nedeni gazlara ilişkin bilgi eksikliğiydi. 1756'da İskoçJoseph Black "sabit gaz" dediği karbon dioksidi buluncaya dek bilinen tek gaz hava idi. İngiliz kimya bilgini Joseph Priestley daha sonra deneysel olarak on kadar yeni gaz keşfeder. Bunlardan biri onun "yetkin gaz" dediği, ilerde Lavoisier'in "oksijen" adını verdiği gazdır.
Priestley, oksijeni bulmasına karşın flogiston kuramından kopamaz. Üstün bir deneyci olan bu İngiliz bilim adamı, kuramsal yönden rakibi Lavoisier ile boy ölçüşecek yeterlikte değildi. Lavoisier yanma olayı ile 1770'lerin başında ilgilenmeye başlamıştı. Kapalı bir kapta fosfor yakınca gazın ağırlığının değişmediğini, oysa kabı açtığında havanın içeri girmesiyle birlikte gazın ağırlığının az da olsa arttığını saptamıştı. Bu gözlemin yürürlükteki kurama uymadığı belliydi, ama daha doyurucu bir açıklaması da yoktu.

Kütlenin Korunumu Kanunu
Lavoisier aradığı açıklamanın ipucunu bir kaç yıl sonra Priestley'le Paris'te buluştuğunda elde eder. Priestley cıva oksit üzerindeki deneylerinden söz ederken bulduğu "yetkin gaz"ın özelliklerini belirtir. Lavoisier yayınlarının hiç birinde Priestley'e hakkı olan önceliği tanımaz; sadece bir kez, "Oksijeni Priestley'le hemen aynı zamanda keşfetmiştik," demekle yetinir.
Doğrusu, oksijenin keşfinde öncelik Lavoisier'in değildi; ama bu gazın gerçek önemim ilk kavrayan bilim adamı oydu. Priestley'in deneylerini kendine özgü dikkat ve özenle tekrarlamaya koyulur. Belli miktarda havaya yer verilen bir kapta cıva ısıtıldığında, cıvanın kırmızı cıva okside dönüşmesiyle ağırlık kazandığı, havanın ise aynı ölçüde ağırlık yitirdiği görülür. Lavoisier deneylerinde bir adım daha ileri gider: cıvadan ayırdığı cıva oksidi (calx'ı) tarttıktan sonra daha fazla ısıtır; kora dönüşen kırmızı oksidin giderek yok olmaya yüz tuttuğunu, geriye belli sayıda cıva taneciğiyle, solunum ve yanma sürecinde atmosferik havadan daha etkili bir miktar "elastik akıcı" kaldığını saptar. Elastik akıcı Priestley'in "yetkin gaz" dediği şeydi.
Lavoisier üstelik bu artığın ağırlığı ile cıvanın ilk aşamadaki ısıtılmasından azalan hava ağırlığının da eşit olduğunu belirler. Dahası, cıva oksidin ısı altında cıvaya dönüşmesiyle kaybettiği ağırlık etkili bölümüyle (yani oksijenle) birleşmesiyle gerçekleşmektedir. Başta önemsenmeyen bu kuram, suyun iki gazın birleşmesiyle oluştuğuna ilişkin Cavendish deney sonuçlarını da açıklayınca, bilim çevrelerinin dikkatini çekmede gecikmez. Cavendish deneylerinde, asitlerin metal üzerindeki etkisinden "yanıcı" dediği bir gaz elde etmiş, bunu flogiston sanmıştı. Ancak Priestley'in bir deneyi onu bu yanlış yorumdan kurtarır. Priestley, hidrojen ve oksijen karışımı bir gazı elektrik kıvılcımıyla patlattığında bir miktar çiyin oluştuğunu görmüştü. Aynı deneyi tekrarlayan Cavendish daha ileri giderek patlamada "yanıcı" gazınsu olduğunu saptar.
Flogiston teorisi yıkılmıştı artık. Yeni teorinin benimsenmesi, kimi bağnaz çevrelerin direnmesine karşın, uzun sürmez. Kimyada geciken atılım sonunda gerçekleşmiş olur. Lavoisier ulaştığı sonucu Bilim Akademisi'ne bir bildiriyle sunar; ne var ki, tek kelimeyle de olsa Priestley, Cavendish, vb. deneycilerin katkılarından söz etmez. Lavoisier'in aslında ne yeni kimyasal bir nesne, ne de yeni kimyasal bir olgu keşfettiği söylenebilir.yeni ve işler bir sistem kurmaktı. 1789'da yayımlanan "Traité Élémentaire de Chimie" adlı yapıtı, kendi alanında, Newton'un Principia'sı sayılsa yeridir. Biri modern fiziğin, diğeri modern kimyanın temelini atmıştır.
Lavoisier'i unutulmaz yapan bir özelliği de nesnelerin kimyasal değişimlerini ölçmede gösterdiği olağanüstü duyarlılıktı. Bu özelliği ona "Kütlenin Korunumu Yasası" diye bilinen çok önemli bilimsel bir ilkeyi ortaya koyma olanağı sağlar. Lavoisier kimi kez kendi adıyla da anılan bu ilkeyi şöyle dile getirmişti:
"Doğanın tüm işleyişlerinde hiç bir şeyin yoktan var edilmediği, tüm deneysel dönüşümlerde maddenin miktar olarak aynı kaldığı, elementlerin tüm bileşimlerinde nicel ve nitel özelliklerini koruduğu gerçeğini tartışılmaz bir aksiyom olarak ortaya sürebiliriz."
Genelleştirme
Özel görelilikte kütlenin korunumu mevcut değildir. Nitekim bir parçacık sisteminin kütlesinin, her bir parçacığın kütlelerinin toplamına eşit olduğu prensibi de özel görelilikte doğru değildir.


Sen sadece aynasin...
Misafir - avatarı
Misafir
Ziyaretçi
1 Ekim 2011       Mesaj #3
Misafir - avatarı
Ziyaretçi
saolun ama bana 9 örnek daha lazım yardımcı olursanız sevinirim Msn Happy
Misafir - avatarı
Misafir
Ziyaretçi
21 Aralık 2011       Mesaj #4
Misafir - avatarı
Ziyaretçi
Kütlenin Korunumu Konu Anlatımı
Kütlenin Korunumu Konu Anlatımı, Kütlenin Korunumu Kanunu, Lavoisier Kanunu nedir, Mol Kütleleri nedir

Kütlenin Korunumu

Bir kimyasal tepkimede pratik olarak tepkimeye giren maddelerin kütleleri toplamı, tepkime sonunda oluşan ürünlerin kütleleri toplamına eşittir. Ancak gerçekte tepkime sonunda bir miktar kütle enerjiye dönüşür. Fakat bu kütle oldukça az olduğundan ihmal edilir.
• Ca + Br2= CaBr2
• 40g + 160g= 200g
• 20g + 80g= 100g
• 10g + 40g= 50g
• 5g + 20g= 25g
• 1g + 4g= 5g
• 2g + 8g= 10g
Bir kimyasal tepkimede atom cinsi ve sayısı kesinlikle korunur. Elementlerin mol - atom sayıları kesinlikle korunur. Kütle kesinlikle korunur. Enerji kesinlikle korunmaz. Kimyasal özellikler kesinlikle korunmaz. Mol sayısı korunabilirde korunmayabilirde. Molekül sayısı, basınç ve hacim tepkimenin cinsine maddelerin yapısına ve ortamın şartlarına göre korunabilir de korunmayabilirde
• N2(gaz)+3H2(gaz)
• 2NH3(gaz) + ısı
Atom Cinsi ve Sayısı
• 2 tane N atomu + 6 tane H atomu
Kütle
• 28g. + 6 gram= 34g.

Mol – atom sayısı
• 2 mol-atom
• Azot + 6 mol-atom
• hidrojen
• 2 mol-atom N
• 6 mol-atom H
• Enerji + 22 Kkal
Mol sayısı 1 mol N2 + 3 mol H2= 2 mol NH3
Molekül sayısı
• 1 tane N2 molekülü + 3 tane H2 molekülü= 2 tane NH3 molekülü
• Basınç (V,Tsabit) P atm + 3 P atm= 2P atm
• Hacim (P,Tsabit) 1 Litre + 3 Litre= 2 Litre
• H2 (gaz) + I2 (gaz)= 2 HI (gaz)
• Atom cinsi ve sayısı: 2 tane H atomu + 2 tane I atomu= 2 tane H atomu
• Kütle: 2 gram + 254 gram= 256 gram
• Mol – atom sayısı: 2 mol-atom hidrojen + 2 mol-atom İyot= 2 mol-atom Hidrojen, 2 mol-atom İyot
• Mol sayısı: 1 mol H2 + 1 mol I2= 2 mol HI
• Molekül sayısı: 1 tane H2 molekülü + 1 tane I2 molekülü= 2 tane HI molekülü
• Basınç (V,Tsabit): 1 atm + 1 atm= 2 atm
• Hacim (P,Tsabit): 1 litre + 1 litre= 2 litre
• C (katı) + O2 (gaz)= CO2 (gaz)
Atom cinsi ve sayısı= 1 tane C atomu + 2 tane O atomu= 1 tane C atomu, 2 tane O atomu

Kütle 12 gram + 32 gram= 44 gram

Mol – atom sayısı= 1 mol atom C + 2 mol atom O, 1 mol atom C, 2 mol atom O

Enerji= Mol sayısı 1 mol + 1 mol= 1 mol

Molekül sayısı= + 1 tane O2 molekülü= 1 tane CO2 molekülü, Basınç (V,Tsabit) + P atm= P atm, Hacim (P,Tsabit) + V Litre= V Litre

SABİT ORANLAR YASASI (PROUST YASASI)

Bir bileşikteki elementlerin, kütlelerinin oranı, kütlece yüzde bileşimi sabittir.

Örn; Al=27, S=32 olduğuna göre Al2S3 bileşiğinde:

Mol sayıları oranı : nAl = 2 Kütleleri oranı : mAl = 2.27 = 9 ‘dır.

nS = 3 mS = 3.32 16

9 gram Al + 16 gram S = 25 gram bileşik oluşturur.

25 gram bileşikte 9 gram Al, 16 gram S vardır.

100 gram bileşikte 36 gram Al, 644 gram S vardır.

Bileşikte kütlece %36 Al, %64 S vardır.

KATLI ORANLAR YASASI (DALTON YASASI)

İki element aralarında iki bileşik oluşturuyorsa, bu elementlerden birinin sabit miktarları ile birleşen diğer elementin değişen miktarları arasında basit bir oran vardır.

Örn; NO2 – N2O4 bileşik çiftinde:

Aynı miktar N ile birleşen O kütleleri arasında.

2/ NO2 = N2O4 = 4

1/ N2O5 = N2O5 5

Aynı miktar O ile birleşen N kütleleri arasında

HACİM ORANLARI YASASI (GAY – LUSSAC YASASI)

a) Kimyasal bir tepkimeye giren gazlarla, tepkimede oluşan gaz halindeki ürünlerin aynı koşullarda (aynı sıcaklık ve basınç) hacimleri arasında sabit bir oran vardır.

b) Aynı koşullarda gazların hacimleri mol sayıları ile doğru orantılıdır.

Örn; H2(g) + Cl2(g) ® 2HCl(g) tepkimesine göre, 1 mol H2 1 mol Cl2 ile birleşerek 2 mol HCl oluşturur. Hacimler mol sayıları ile doğru orantılı olduğundan, aynı olayı anlatmak için “1 hacim H2 gazı, 1 hacim Cl2 gazı ile birleşerek eşit koşullarda 2 hacim HCl gazı oluşturur.” İfadesi de kullanılabilir.

Aynı şekilde, N2(g) + 3H2(g) ® 2NH3(g) tepkimesine göre 1 hacim azot gazı 3 hacim hidrojen gazı ile birleşerek eşit koşullarda 2 hacim NH3 gazını oluşturur diyebiliriz.

İyonlaşma enerjisi

Bir atomdan bir elektron koparmak için gerekli olan enerjidir.bu enerji her atomda aynı değildir.örneğin helyum atomundan bir elektron koparmak için en büyük enerjiyi vermeniz gerekir(helyum iyonlaşma enerjisi en büyük olan atomdur.).bir atomun iyonlaşma enerjisi demek onun kimyasal tepkimeye girme isteği demektir.Bu nedenle soygazlar çok nadir tepkime yaparlar.Eğer bir atomun iyonlaşma enerjisi büyükse o atomu kimtasal tepkimeye sokmak da o kadar zordur.zaten atomlar değerlik orbitallerini doldurmak için kimyasal tepkimeye girerler.Değerlik orbitalleri dolu olan bir atomu kimyasal tepkimeye sokmak demek ondan elektron koparmak demektir bu nedenle değerlik elktronları dolu olan atomlar çok nadir tepkimeye girerler.

Molar Hacim (Gazlar İçin)

0°C derecede 1 atm basınç altında deniz seviyesindeki koşula normal şartlar denir.Normal şartlar altında 1 mol gazın hacmi 22,4 lt dir.yani 6,02*1023 atomdur.

Mol Kütleleri
Her atom belli sayıda proton ve belli sayıda nötron içerir.Nötron
ve proton kütleleri birbirrine yakın olduğu için her elementin mol kütlesi bulunur.

İzotop atomlar nedeniyle her atomun mol kütlesi sabit değildir(ama bu fark o kadar küçüktür ki dikate alınmaz.). Örneğin C yani karbon atomunun 1 molü 12g gelmektedir.hidrojen atomunun 1 molü 1g gelmektedir.Nerdeyse her atomda nötron ve proton sayısı eşittir. Ama kütlelere baktığımızda bunun eşit olmadığını görüyoruz.Örneğin bildiğimiz demir (Fe)simgeli elementin atom numarası 26 dır.Yani 26 tane proton içerir.Ama nötron sayısı her demir atomu için sabit değildir. Fakat demir atomunun kütle numarası 55,85 dir.26 nın iki katı 52 dir.Burda 3,85 likbir fak oluşur.Buda bazı atomların 1 yane fazla nötron içerdiğini gösterir.Bunların yüzdeliğiyle atomun doğadaki kütlesi yani ortalama kütlesi bulunur.

Benzer Konular

26 Ağustos 2009 / ThinkerBeLL Kimya
28 Mayıs 2014 / Misafir Soru-Cevap
5 Aralık 2013 / Misafir 27 Cevaplanmış
28 Haziran 2013 / ayten_76_44 Soru-Cevap