Cevap Yaz Yazdır
Gösterim: 9.440|Cevap: 0|Güncelleme: 7 Haziran 2012

Açı Kenar Bağlantıları

25 Şubat 2007 18:57   |   Mesaj #1   |   
Avatarı yok
Ziyaretçi
1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür.

geo334

ABC üçgeninde m( A ) > m(B ) > m(C)
a > b > c
Sponsorlu Bağlantılar
Terside geçerlidir. Uzun kenarı gören açı kısa kenarı gören açıdan daha büyüktür.

İkizkenar üçgenden de bildiğimiz gibi eşit açıların karşılarındaki kenarlar eşittir.

m( B ) = m( C ) => |AB| = |AC|

m( A ) < m( B ) = m( C ) ise
|BC| < |AB| = |AC| olur.


geo335
  • Bir üçgende bir tane geniş açı olabileceğinden geniş açının karşısındaki kenar daima en büyük kenar olur.
2. Bir üçgende herhangi bir kenarın uzunluğu diğer iki kenarın uzunlukları toplamından küçük farkının mutlak değerinden büyüktür.

ABC üçgeninde

lb - c l <a < (b + c)
Diğer kenarlar için de aynı durum geçerlidir.
|a – c| < b < (a + c) ve |a – b| < c < (a + b) olur.


geo336

3. Dik, dar ve geniş açılı üçgenlerde kenarlar arasındaki ilişkiler.a. Bir dik üçgende

kenarlar arasında
a2 = b2 + c2 bağıntısı vardır.


geo337

b. Dar açılı üçgenb ve c sabit tutulup A açısı küçültülürse a da küçülür.

m( A ) < 90° Û a2 < b2 + c3


geo339

c. Geniş açılı üçgen b ve c sabit tutulup A açısı büyütülürse a da büyür.
m( A ) < 90° Û a2 > b2 + c3
geo341


4. Çeşitkenar bir üçgende aynı köşeden çizilen yükseklik, açıortay ve kenarortay uzunluklarının sıralanması,

geo342

|AH| = ha ; yükseklik

|AN| = nA ; açıortay
|AD| = Va ; kenarortay


ha< nA <Va

5. Çeşitkenar bir üçgende, açı, açıortay, kenarortay ve yükseklik arasındaki sıralama;

geo343

ABC üçgeninde a, b, c kenar uzunluklarıdır.

m( A ) > m( B ) > m( C ) olduğuna varsayalım.
Bu durumda üçgende


kenarlar : a > b > c

yükseklikler : ha < hb < hc
Açıortaylar : nA < nB < nC
Kenarortaylar : Va < Vb < Vc

şeklinde sıralanırlar. Yani üçgenin yardımcı elemanları kenarlarının sırasına ters olarak sıralanır.
  • Eşkenar ve ikizkenar üçgen için bu sıralamalar geçerli değildir.
6. Bir kenarları ortak olan içiçe iki üçgenden içtekinin çevresi daha küçük olur.

geo345

|BD| + |DC| < |AB| + |AC|
  • ABCD bir dörtgen, a, b, c, d kenar uzunlukları [AC] ve [BD] köşegenlerdir.
ABCD dörtgeninde karşılıklı kenarların uzunlukları toplamı, köşegenlerin uzunlukları toplamından küçüktür.
geo346

a + c < |AC| + |BD| ve b + d < |AC| + |BD|

köşegen uzunlukları toplamı çevreden daha büyük ve çevrenin yarısından daha küçük olamaz.
  • İç içe şekillerde içteki şeklin çevresi daha küçük olacağından
|DA| + |AB| + |BC|
toplamı |DE| + |EF| + |FC|
toplamından daha büyüktür.

geo347

7. ABC üçgeninin içindeki herhangi bir P noktası için;

geo348

|AP| + |BP| + |CP|

toplamı ABC üçgeninin çevresinden büyük, çevresinin yarısından küçük olamaz.

geo349

  • Burada geo350ve Çevre değerleri sınır değer değildir.
Kaynak
Son düzenleyen _Yağmur_; 7 Haziran 2012 16:21 Sebep: Kırık linkler kaldırıldı.

Daha fazla sonuç:
Açı Kenar Bağlantıları

acebook yorumları
paneli aç