Arama

Tristör Nedir?

Güncelleme: 30 Mayıs 2010 Gösterim: 6.673 Cevap: 1
_Yağmur_ - avatarı
_Yağmur_
VIP VIP Üye
30 Mayıs 2010       Mesaj #1
_Yağmur_ - avatarı
VIP VIP Üye
Tristör
Vikipedi, özgür ansiklopedi
Sponsorlu Bağlantılar

adszal

Sembolü

Tristör, kontrollü yarı iletken bir anahtarlama elemanıdır. SCR olarak da bilinirler. SCR silikon kontrollü doğrıltucu anlamına gelmektedir. Özellikle güç elektroniği devrelerinde kullanılan tristörler çok hızlı açma ve kapama özelliğine sahiptirler. Son teknikle saniyede 25.000 defa açıp kapama yapan tristörler yapılmıştır. Dört katlı bir yarı iletkenden meydana gelen tristörler (P-N-P-N) kapı (gate) ucu ile iletken yapılabilmektedir. Doğru akımda çalışırlar. Yani tek yönlü akım geçirirler. Anot-Katot ve gate olmak üzere üç bağlantı ucu mevcuttur. Yüksek güçlü tristörlerde anot geniş bir taban üzerine tespit edilir. Bu tristörün hem kolay soğutulmasını hem de kolay monte edilmesini sağlar. Katot kalın bir kablo ile gate ucu ince bir bükülebilir kablo ile çıkartılmıştır.
Tristörler bir kere iletken oldu mu (eğer besleme voltajı kesilmezse) devamlı iletken kalır. Bunun için özel metodlarla tristörleri yalıtkan duruma geçirmek gerekir. Bu davranışa iki durumu kararlı (bistable) davranış denir. Tristörler güç elektroniğinin gelişmesinde çok önemli rol oynamıştır. Bunun için 2000 Volt ve 3300 Ampere kadar çalışabilen tristörler yapılmıştır. Tristörlerde en büyük problem, açma-kapama esnasında meydana gelen ısıyı ve enerji birikimini dağıtmaktır. Bunun için çok çeşitli metodlar geliştirilmiştir.
SCRlerin yüksek gerilim ve amper değerlerinde kullanılabilmelerinin sebebi gerilim düşümlerinin 1-2 volt kadar az olması ve dolayısıyla iletim durumundayken ısı kaybının oldukça düşük olmasıdır. Gerilim düşümü u elemanın üzerinden geçen akım ise I ise ısı kaybı p aşağıdaki formülle hesaplanabilir.
p = u.I
Tristörler diğer yarıiletken elemanlar gibi teorik olarak sonsuz ömre sahiptirler ancak aşırı sıcaklıkta bu eleman tahrip olur.

Tristörün Kendiliğinden İletime Geçmesi

Tristörler tetikleme sinyalleri ile iletime sokulurlar ancak bazı durumlarda eleman kendiliğinden iletime girebilir. Bu durumda elemanı kontrol edemeyiz. Bu durumları sıralayalım:
  1. Elemanın uçlarındaki gerilimin yükselme hızı kritik yükselme hızından büyükse
  2. Elemanın uçlarındaki gerilim sıfır devrilme gerilimi değerinden eşit veya büyükse
  3. Elemanı kesime sokmak için elemana ters yönde gerilim uygularız. Ters yönde gerilim uygulama süresi sönme süresinden küçükse
Tristörümüz kendiliğinden iletime girer.


"İnşallah"derse Yakaran..."İnşa" eder YARADAN.
_Yağmur_ - avatarı
_Yağmur_
VIP VIP Üye
30 Mayıs 2010       Mesaj #2
_Yağmur_ - avatarı
VIP VIP Üye
TRİSTÖRÜN YAPISI VE ÖZELLİKLERİ

Sponsorlu Bağlantılar
a) Tristörün yapısı ve çeşitleri :

Tristör en az dört silisyum yarı iletken parçanın birleştirilmesinden oluşan , anahtar ve doğrultma görevi yapan bir elemandır. SCR ( Silikon Kontrollü Redresör) ismi de verilir. Değişik güçte tristörler imal edilmektedir. Çalışma sahası ; 50 V – 8000 V , 0.4 A – 4500 A arasında olabilmektedir.
Tristörler sırasıyla birbirini takip eden “ P ” ve “ N ” tipi silisyumdan yapılmış dört yarı iletken tabakadan yapılmıştır. Bu dört tabakanın en dışındaki “ P ” tabakası anot, diğer dıştaki “ N ” tabakası katot görevi yapar. Yapısındaki yarı iletkenler çeşitli kalınlıktadır ve değişik miktarlarda katkılandırılmıştır. Bu yüzden her katmanın iletkenliği farklıdır.
Yukarıdaki şekilde tristörün yapısı, diyotlu ve transistörlü eşdeğer devresi göstererilmiştir. Transistörlü eşdeğer devresinde G ucuna bir akım verilince NPN tipi transistör iletime geçerek kollektör akımı geçirmeye başlar. Bu kollektör akımı PNP tyransistör baz akımını sağladığı için PNP tipi transistörde hemen iletime geçer ve emiter – kollektör üstünden NPN tipi transistörün beyzine akım gönderir. Dolayısı ile G ucundan uygulanan akım kesilse bile transistörler birbirini besleme devam eder, iletimde kalırlar.

9 çeşit tristör vardır ;
1) Standart tristör: Ağır sanayi cihazlarında AC ve DC de 400 – 1000 Hz,4000V,1000A
2) Hassas tristörler : Düşük gerilimli elektronik devrelerde. 0,7V – 100uA ile tetiklenebilir.
3) Hızlı tristörler: 10 KHz’ lik frekans sınırında çalıştırılabilirler.
4) Komplemanter ( Tamamlayıcı) tristör : Geyt anota yakındır. Negatif pals ile çalışır.
5) İki geytli tetrod tristör
6) Geyt ile yalıtkan olan tristör ( GTO ) , ( GCS )
7) Fototristör
8) Asimetrik çok hızlı tristör ( ASCR )
9) Amplifikatör geytli tristör.

b) Tristörün uçlarının açıklanması :

Aşağıda bir tristörün sembolü gösterilmektedir. Tristör 3 elektrotlu ( uç , ayak ) bir elemandır. Bu uçlar Anot, katot ve geyt ( gate , kapı )’ dir.

c) Tristörün çalışması :

Tristörü doğru polarize etmek için anotuna ( + ) katotuna ( - ) gerilim verilmelidir. Uygulanan bu gerilim değeri çok arttırılırsa bir noktadan sonra tristör aniden iletime geçip A –K direnci dolayısı ile A – K voltajı düşer geçen akım artar. Eğer ters polarize edilip gerilim arttırılırsayine bir noktadan sonra ters yönde ani akım artışı olur. Bu ise istenmeyen bir durumdur ve tristörü bozar. Tristörün doğru polarize edilip A –K voltajının arttırılması ile iletime geçirilmesi kullanılan bir yöntem değildir. Çoğunlukla A – K doğru polarize edildikten sonra geyte ufak bir gerilim darbesi verilip tristör iletime geçirilir. Tristör bu şekilde iletime geçtikten sonra geyt gerilimi kesilse bile tristör iletimde kalır.

d) Tristörün kullanım alanları :

Kumandalı doğrultucular, elektronik kontaktörler, zaman rölesi, DC ve AC motorların hızlarının ayarlanması ve dönüş yönlerinin değiştirilmesinde kullanılır.


KONU: B. TRİSTÖR TETİKLEME YÖNTEMLERİ
a) Tristörü tetikleme ve yöntemlerinin açıklanması:

Tristör birden fazla yöntemle iletime geçirilebilir. Bu metotlar şunlardır.
· Anot-Katot gerilimdeki hızlı bir değişim: Anot – Katot gerilimi iletim yönünde çok hızlı bir değişim gösterirse tristörü iletime geçirebilir. Nedeni de tristörün birleşim bölgelerinin bir kondansatör gibi davranmasıdır.
· Doğru yönde Anot – Katot geriliminin çok arttırılması : Geyt gerilimi sıfırken ( Ig=0) anot – katot gerilimi çok arttırılırsa tristör kırılma voltajından sonra iletime geçer.
· Işıkla tetikleme : Diyot ve transistörlerde olduğu gibi tristörlerde de foto elektrik etkisi ile elektron hareketi başlatılabilir. Işık bir mercek yardımıyla silisyum yapıya uygulanır. Anot katot arası iç direnç küçülerek tristör iletime geçer.
· Sıcaklığın arttırılması : Sıcaklığın artması ile tristör iletime geçebilir. Ancak bu istenmeyenTristörün bileşim noktasındaki ısının artması kaçak akımların artmasına neden olur. Eğer kaçak akım seviyesi eşik seviyesini geçerse tristör kendiliğinden iletime geçer. bir durumdur.
· Geyt’ine düşük gerilim, küçük akım uygulama : Ençok kullanılan yöntemdir. Geyt’eTristörünGeyt’e uygulanan düşük gerilim, anot – katot arası direnci küçültür ve tristör iletime geçer. Bu yöntem DC ve AC devrelerde uygulanırken devre özelliklerinden dolayı farklı şekillerde uygulanır. Tristörü DC’ de tetiklemek gayet basitken AC’ de tetiklemek için Geyt polarması doğrultulmalıdır. uygulanan düşük gerilimlerle, büyük gerilim ve akımlı devreler kontrol edilir. anot – katot arası direnci çok büyüktür.

b) Tristörün DC’ de tetikenmesi yöntemi :

Tristörün DC tetiklenmesinde geyte tetikleme veren S anahtarı açık olduğu sürece Anot ve katot’un doğru polarma olması , tristörün çalışması için yeterli değildir. S anahtarı kapatılınca tristörün geyt ucu tetikleme voltajını alacağından iletime geçer ve yükü ( lambayı ) çalıştırır. Artık geyt akımı kesilse bile tristör iletimde kalıp lamba yanmaya devam edecektir. Geyt’i tetiklemek için birinci şekilde ayrı bir kaynak kullanılmış ikinci şekilde ise aynı kaynaktan tetikleme voltajı alınmıştır.

c) Tristörün AC’de tetiklenmesi yöntemi :

Tristörü AC’de çalıştırmak DC’ de çalıştırmaya nazaran biraz daha dikkat isteyen durumdur. Çünkü AC voltajda bilindiği üzere akım yönü devamlı değişmektedir. Yani tristörün Anot – Katot ucu devamlı polarma değiştirmektedir. A-K arasına bir süre pozitif alternans gelirken bir süre de negatif alternans gelir. Pozitif alternanslarda tristör tetiklenirse iletime geçer negatif alternanslarda ise Anot-Katot zaten ters polarma olduğu için akım geçirmez. Yani yalıtımdadır. Yalnız her pozitif alternanstan önce tristör yalıtımda olacağı için her pozitif alternansta tetikleme verilmelidir. Bu işlem AC gerilimin bir kısmının değerinin düşürülüp sadece pozitif kısımlarının seçilip geyt’e uygulanması ile sağlanır. Yani A-K üstündeki voltaj paralel bir koldan gerilimi düşürülüp bir diyot ile sadece pozitif kısımlar seçilir ve geyte uygulanır.

KONU: C. TRİSTÖRÜ DURDURMA YÖNTEMLERİ

a) Tristörü durdurma yöntemlerinin açıklanması :
DC gerilimde tristör bir defa tetiklendiğinde tetikleme gerilimi kaldırılsa bile sürekli iletimde kalır. DC gerilimde çalışma devam ederken tristörü durdurmak gerekebilir. Tristörü durdurmak için , seri anahtarla durdurma, paralel anahtarla durdurma ve kapasitif durdurma yöntemleri uygulanır. Temelde bütün bu yöntemler tristörün anot akımını kesmeyi amaçlamaktadır.

b) Tristörün seri anahtarla durdurulması :

Tristörün anot akımının geçtiği yol üstüne anahtar koyup, açarsak anot akımı kesilip tristör durdurulur. Anahtar tekrar kapansa bile çalışmaz. Çalışması için geyte tetikleme vermek gerekir. Şekildeki devrede S1 ve S2 anahtarları açıldığı zaman anot akımı kesilerek tristör yalıtım durumuna geçer.

c) Tristörün paralel anahtarla durdurulması :

Tristöre paralel bir anahtar bağlayarak da anot akımı kesilebilir. Çünkü anahtara basıldığı anda anot akımının tamamı anahtar üstünden geçer , anahtar tristörün A – K arasını kısa devre etmektedir. Anahtardan elimizi çeksek bile artık tristör çalışmaz.

d) Tristörün kondansatör ile durdurulması :

Tristörün A – K arasına bir an ters gerilim uygulamak tristörü yalıtım durumuna getirebilir. Ters gerilimi ayrı bir kaynak vasıtasıyla uygulayabileceğimiz gibi yüklü bir kondansatörü tristör üstünden ters deşarj etmek vasıtasıyla da sağlayabiliriz. Bu yönteme “zorlanmış komitasyon” yöntemi de denmektedir. Yukarıdaki devrede S1 ile tristör iletime geçirildiğinde kondansatör de direnç üstünden kısa bir sürede şarj olur. Daha sonra S2 butonuna basınca yüklü kondansatör tristörün katodundan anoduna doğru deşarj olmak isteyecektir. Akmakta olan anot akımına zıt yönde olan bu deşarj akımı kısa süreli yüksek bir değerde olduğu için anot akımını bir an engelleyip tristörün yalıtıma gitmesine neden olur.

e) Tristörü durdurma yöntemlerinin şekil çizerek açıklanması :

Şemadaki devrede tristörlerin her biri iletime geçerken diğerini kapasitif yolla yalıtım durumuna sokar.

KONU: D. TRİSTÖRÜ KORUMA YÖNTEMLERİ

1. Tristörü koruma yöntemlerinin açıklanması:

Tristörlerin, üzerlerinden geçen akımların yüksek olmasından dolayı çok dikkatli kullanılmaları gerekir. Tristörün bozulması, tristöre zarar verdiği gibi kullanıldığı sisteme veya makineye da zarar verir.

Örneğin sanayide tristörler motor kontrol devrelerinde oldukça sık kullanılırlar. En ufak bir hatada tristör bozulursa motorun tam devirde dönmesine yol açabilir. Bunun sonucunda makinenin zarar görmesi kaçınılmazdır.

Tristörün korunmasını iki bölümde toplayabiliriz.
a) Geyt tetikleme devresinin korunması
b) Anot – Katot devresinin korunması.

a) Geyt tetikleme devresinin korunması: Tristörler P-N bileşimlerinden oluşan yarı
iletken parçalar olduğu için direkt olarak besleme gerilimine bağlanmaz. Çünkü üzerlerinden fazla akım geçeceğinden tristör bozulur. Bu yüzden Tristör geyt ucundan tetiklenirken seri bir direnç üzerinden gerilim uygulanır. Bu direnç geyt ucundan aşırı akım geçişini engeller. Direnç değeri hesaplanırken uygulanan Geyt gerilimi ( Vgg ) , Tristörün geyt ucunun çekeceği akım ve tristör iletimdeyken geyt-katot voltajı dikkate alınır. Tristörlerin geyt voltajı genellikle bir kaç volt civarındadır.
b) Anot-katot devresinin korunması : Tristör kullanılırken, anot akımının dayanabileceği değerden fazla olmaması gerekir. Bu yüzden bir tristör asla yüksüz çalıştırılmaz. Yükte çalıştırılırken de tristör yük akımını kaldırabilecek değerde seçilir. Eğer yük akım değeri maksimum anot akımına yakın değerlerdeyse, bu durumda da tristör için yeterli bir soğutma sağlanmalıdır. Her ne kadar tristörden makul bir seviyede akım geçse de , bu akım değeri sınıra yakın olduğu için tristörün ısınmasına yol açar ve 130’C civarında tristörün bozulmasına sebep olur.
Ayrıca tristör kullanılırken ileri ve ters kırılma gerilimleri de dikkate alınmalıdır. Ters yöndeki aşırı bir gerilim yine tristörü bozar. Bu yüzden tristör kırılma voltajları yeterince yüksek olanlar seçilmelidir.

2. Tristörün aşırı akımda çalışmasının sakıncaları:

Tristör aşırı akımda çalıştırılırsa tristörde ısınma meydana gelir. Bu ısı belli bir seviyeyi aşarsa tristör bozulur. Ayrıca dayanabildiği en fazla geyt ve anot akımlarının üstünde akım değerleri uygulanırsa p-n bileşimleri ya kısa devre olur ya da bağlantıları eriyerek kopar ve açık devre olur.

3. Tristörün aşırı gerilimde çalışmasının sakıncaları:

Tristörün geytine aşırı gerilim uygulanırsa üzerinden fazla akım geçip bozulmasına yol açar. Eğer aşırı gerilim Anot-Katota uygulanıyorsa ya düzensiz iletime geçme durumları olur ya da tristörün bozulmasına sebep olur.

4. Endüktif yüklerde tristörü korumanın önemi:

Bir tristörde yük olarak bobin kullanılıyorsa, herhangi bir sebeple tristörün yalıtıma geçirilmesi ve yük akımının aniden kesilmesi sonucunda yük olarak kullanılan bobin uçlarında besleme geriliminin yaklaşık üç katı genliğe sahip, yük frekanslı bir gerilim oluşur. Bu gerilimin genliği besleme geriliminin üç katından başlayarak gittikçe söner ve bir süre sonra sıfıra düşer. Ancak kısa bir süre için de olsa tristörün dayanma gerilimini aştığı taktirde tristöre hasar verebilir.
Tristörü bu gibi durumlarda korumak için şu gibi tedbirlere başvurulur; Yüksek frekanslı gerilimin çabuk sönmesini sağlamak için yüke paralel bir kondansatör bağlanabilir. Ayrıca tristöre zıt yönde gerilim yüklenmesini önlemek için tristörün anot-katot arasına veya yüke paralel ters yönde diyot bağlanabilir.

E. TRISTORLERDE YARIM VE TAM DALGA GUC KONTROLU

1. Guc kontrolunun tanimi :
Bir cihazin akim, gerilim , frekans, faz, iletim zamani orani ( duty-cycle ) gibi ozelliklerini degistirerek calisma gucunun ayarlanmasina guc kontrolu denir.

2. Tristorlerde guc kontrolu cesitleri :
Tristorlerde guc kontrolu tristorun tetiklenme zamaninin degistirilip iletimde kalma oraninin degistirilmesi ile yapilir. Temelde yarim dalga ve tam dalga olmak uzere 2 cesit guc kontrolu vardir. Tristorlerle guc kontrolunun en buyuk avantaji gereksiz guc harcamasinin olmamasidir.

3. Yarim dalga guc kontrolunun sekil ustunde aciklanmasi :

Tristorler dalga seklinin sadece bir saykilini kontrol eder ( dogrultur) . Negatif alternanstatristor yalitimda oldugu icin yuk akimi sifirdir. Tetikleme pals zamanlamasini degistirereksebeke voltajinin 0 – 180 dereceleri arasi kontrol edilebiliriz.

4. Yarim ve tam dalga guc kontrolu arasindaki farklar:

· Yarim dalga tristorlu dogrultmaclar pozitif alternansi, tam dalga tristorludogrultmaclar ise her iki alternansi dogrultur.
· Yarim dalga tristorlu dogrultmaclarda bir tane tristor kullanilir. Tam dalga tristorlu dogrultmaclar ise iki tane tristor kullanilir.
· Yarim dalga tristorlu dogrultmaclarda ortak uclu trafo kullanilmasina gerek yoktur. Tam dalga tristorlu dogrultmaclar ise ortak uclu trafo kullanilmasina gereklidir.


"İnşallah"derse Yakaran..."İnşa" eder YARADAN.