Ziyaretçi
İdealizm
MsXLabs.org
Evrensel bir teori olarak Newton mekaniğinin gerçek ölüm çanları, 20. yüzyılın başlarında kuantum mekaniğinin beşiğinde duran Einstein, Schrödinger, Heisenberg ve diğer bilimciler tarafından çalınmıştı. “Elementer parçacıklar”ın davranışları klasik mekanik tarafından açıklanamıyordu. Yeni bir matematik geliştirilmeliydi.
Bu matematikte, “faz-uzayı” gibi, “operatörler” gibi önemli rol oynayan kavramlar mevcuttur. Faz-uzayında, bir sistem, koordinat olarak kendi serbestlik dereceleri olan bir nokta olarak tanımlanır. Operatörler ise, bizzat büyüklükten ziyade daha çok işleme benzemesi anlamında cebirsel büyüklüklerle uyuşmayan büyüklüklerdir (aslında sabit özellikleri değil ilişkileri ifade ederler). Olasılık da çok önemli bir rol oynar, ama “içkin olasılık” anlamında: bu kuantum mekaniğinin başlıca karakteristiklerinden biridir. Gerçekte kuantum mekanik sistemler, izleyebilecekleri tüm olası yolların üst üste binmesi olarak yorumlanmalıdırlar.
Kuantum parçacıklar ancak bu parçacıkların “fiili” ve “zımni” durumları arasındaki bir iç ilişkiler kümesi olarak tanımlanabilirler. Bu anlamda tamamen diyalektiktirler. Bu parçacıkların şu veya bu şekilde ölçülmesi sadece “aktüel” durumun açığa çıkmasına yol açar ki, bu “aktüel” durum aslında bütünün görünümlerinden yalnızca biridir (bu paradoks “Shrödinger’in kedisi” hikâyesiyle popüler bir tarzda ortaya konulur). Bu, “dalga fonksiyonunun çöküşü” olarak adlandırılır ve Heisenberg kesinsizlik ilkesiyle ifade edilir. Kuantum mekaniğinin fiziksel gerçekliğe getirdiği bu tümüyle yeni bakış tarzı, çok uzun bir süre boyunca diğer bilimsel disiplinler tarafından “karantina altında” tutuldu. İstisnai bir mekanik türü olarak, yalnızca elementer parçacıkların davranışlarını betimlemeye yarayacak bir şey olarak, klasik mekaniğin kurallarının bir istisnası olarak, herhangi bir önemi olmayan bir şey olarak görüldü.
Eski kesinliklerin yerine artık kesinsizlik hüküm sürecekti. Atomaltı parçacıkların hayal bile edilemez büyüklükteki hızlarla yaptıkları görünüşte rastlantısal hareketler, eski mekaniğin kavramlarıyla açıklanamıyordu. Bilim bir açmaza girdiğinde, artık olguları açıklayamaz hale geldiğinde, bir devrim için ve yeni bir bilimin ortaya çıkışı için zemin hazırlanmış demektir. Ne var ki, yeni bilim, başlangıçtaki biçimleri itibariyle, henüz tümüyle gelişmiş değildir. Ancak bir dönem sonra kendi nihai ve tamamlanmış biçimini ortaya koyar. Bir doğaçlama, bir belirsizlik aşaması, değişken ve sık sık birbirleriyle çelişen yorumlar aşaması, ilk başlarda hemen hemen kaçınılmazdır.
Son onyıllarda, doğanın sözde “stokastik” (“rastlantısal”) yorumuyla determinizm arasında bir tartışma başlamıştır. Temel sorun şu ki, bu tartışmada zorunluluk ve tesadüf mutlak karşıtlıklar, karşılıklı olarak birbirlerini dışlayan zıtlıklar olarak ele alınmaktadır. Böylece, her ikisi de doğanın karmaşık ve çelişik işleyişini açıklamakta yetersiz kalan iki zıt görüşe varırız.
Alman fizikçi Werner Heisenberg, kuantum mekaniğinin kendine has bir versiyonunu geliştirdi. 1932’de, matris mekaniği sistemiyle Nobel fizik ödülünü aldı. Bu mekanik, elektron orbitallerinin enerji düzeylerini yalnızca sayılar aracılığıyla, herhangi bir resme başvurmaksızın tanımlıyordu. Böylelikle “parçacık” ile “dalga” arasındaki çelişkinin neden olduğu sorunları, olguyu gözümüzde canlandırma çabalarından bütünüyle vazgeçerek ve onu saf matematiksel soyutlama içerisinde ele alarak çözmeyi ummuştu. Erwin Schrödinger’in dalga mekaniği de, Heisenberg’in matris mekaniğiyle aynı soruna yoğunlaşır, ancak mutlak matematiksel soyutlama âlemine geri çekilme ihtiyacı duymaksızın. Fizikçilerin çoğu çok daha az soyut gözüken Schrödinger’in yaklaşımını tercih ettiler ve yanılmadılar. 1944’te, Amerikalı-Macar matematikçi John von Neumann, matris mekaniğiyle dalga mekaniğinin matematiksel olarak eşdeğer olduğunu kanıtladı, ikisi de tamamen aynı sonuçları verebiliyorlardı.
Heisenberg, kuantum mekaniğinde bazı önemli ilerlemeler kaydetmişti. Ne var ki onun tüm yaklaşımına sinen şey, felsefi idealizmin kendine has damgasını bu yeni bilimin üzerine vurma azmiydi. Buradan kuantum mekaniğinin “Kopenhag yorumu” denilen şey doğdu. Bu yaklaşım gerçekten de bilimsel bir düşünce ekolü kılığına ustalıkla bürünmüş bir tür öznel idealizmdi. “Werner Heisenberg” diye yazar Isaac Asimov, “parçacıkları ve bizzat fiziği neredeyse bir bilinemezler âlemine fırlatıp atan temel bir sorunu ortaya koymaya girişti.” Kullanılacak doğru kelime budur. Burada bilinmeyenle ilgilenmiyoruz. Bu, bilimde her zaman mevcuttur. Bilimin tüm serüveni bilinmeyenden bilinene, bilgisizlikten bilgiye ilerleyiştir. Ama insanlar bilinmeyeni bilinemez ile karıştırdıklarında ciddi bir zorluk ortaya çıkar. “Bilmiyoruz” ile “bilemeyiz” sözcükleri arasında temel bir farklılık vardır. Bilim, nesnel dünyanın varolduğu ve tarafımızdan bilinebileceği temel düşüncesinden hareket eder.
Ne var ki, tüm felsefe tarihinde, şu veya bu nedenle “bilemeyeceğimiz” bazı şeylerin olduğunu iddia etmek için, insanın kavrama kabiliyetine sınır koyma çabaları yinelenip durmuştur. Bu nedenle Kant, yalnızca görünümleri bilebileceğimizi ama kendinde-şeyleri bilemeyeceğimizi iddia etmişti. Kant bu düşüncesinde aslında Hume’un şüpheciliğinin, Berkeley’in öznel idealizminin ve sofistlerin ayak izlerini takip ediyordu: Dünyayı bilemeyiz.
1927’de, Werner Heisenberg meşhur “kesinsizlik ilkesini” geliştirdi. Bu ilkeye göre, bir parçacığın konum ve hızını aynı anda istenilen bir kesinlikte belirlemek imkânsızdır. Parçacığın konumu ne kadar kesin ise, momentumu o kadar kesin değildir, ve tersi. (Bu durum diğer özgün özellik çiftleri için de geçerlidir). Farklı yönlerde saniyede 5000 mil hızla hareket eden bir parçacığın hız ve konumunu kesin olarak saptamaktaki zorluk apaçık ortadadır. Ne var ki, buradan, neden ve sonucun (nedenselliğin) genel olarak varolmadığı sonucunu çıkarmak bütünüyle yanlış bir önermedir.
Heisenberg, bir elektronun konumuna nasıl karar verebiliriz sorusunu sorar. Ona bakarak. Ama eğer güçlü bir mikroskop kullanıyorsak, bu, ona bir ışık parçacığını, yani bir fotonu çarptırdığımız anlamına gelir. Işık bir parçacık olarak davrandığına göre, kaçınılmaz olarak gözlenen parçacığın momentumunu altüst edecektir. Bu nedenle, onu tam da gözlemleme eylemiyle değiştiririz. Uyarım öngörülemez ve kontrol edilemez olacaktır, çünkü (en azından mevcut kuantum teorisinde) ışık kuantasının saçılarak merceğe gelme açısını tam olarak önceden kestirme ve kontrol edebilme imkânı yoktur. Konumun doğru belirlenmesi kısa dalga boylu ışığın kullanılmasını gerektirdiğinden, büyük ama öngörülemez ve kontrol edilemez bir momentum elektrona aktarılır. Diğer taraftan, momentumun doğru belirlenmesi, çok düşük momentumlu (ve bu nedenle de büyük dalga boylu) ışık kuantasının kullanımını gerektirir ki, bu da büyük bir kırınım açısı ve böylelikle de konumun kötü bir tespiti anlamına gelir. Konum ne kadar doğrulukla saptanırsa, momentum o kadar az bir doğrulukla tanımlanabilir, ve tersi.
Peki bu sorundan yeni elektron mikroskopları geliştirerek kurtulabilir miyiz? Heisenberg’in teorisine göre hayır. Tüm enerji kuantalarla taşındığına ve tüm maddeler hem bir dalga hem de bir parçacık olarak davranma özelliğine sahip olduğuna göre, kullandığımız her tip aygıt bu kesinsizlik (ya da belirsizlik) ilkesinin hükmü altında olacaktır. Aslında, kesinsizlik ilkesi kavramı yanlıştır, çünkü burada ileri sürülen şey yalnızca, ölçme sorunlarından ötürü kesin hükümlere varamayacağımız değildir. Teori, maddenin tüm biçimlerinin tam da kendi doğasından ötürü belirsiz olduğunu ima etmektedir. David Bohm Modern Fizikte Nedensellik ve Tesadüf adlı kitabında şunları söylüyor:
Böylelikle kuantum teorisinin alışılmış yorumlarında nedensellikten vazgeçilmesi, yalnızca atomik düzeydeki nedensellik yasalarının kapsamına girebilecek değişkenlerin tam değerlerini ölçmekteki aczimizin bir sonucu olarak değil, daha ziyade böyle yasaların varolmadığı gerçeğinin bir yansıması olarak düşünülmelidir.
Heisenberg, belirsizliği, gelişiminin özel bir aşamasında kuantum teorisinin özgün bir görünümü olarak görmektense, doğanın temel ve evrensel bir yasası olarak postüla etti ve doğanın diğer tüm yasalarının bununla uyum içerisinde olması gerektiğini kabul etti. Bu yaklaşım, bilimin geçmişte düzensiz dalgalanmalar ve tesadüfi hareketlerle ilişkili sorunlarla karşı karşıya kaldığı andaki yaklaşımından tamamen farklıdır. Hiç kimse, bir gazın içindeki tekil bir molekülün kesin hareketini belirlemenin ya da özel bir araba kazasının tüm ayrıntılarını önceden kestirmenin mümkün olduğunu düşünmez. Ama böylesi olgulardan genel olarak nedenselliğin varolmadığı sonucunu çıkarmaya kalkışan bir girişim daha önce asla söz konusu olmamıştı.
Ama yine de, belirsizlik ilkesinden tam da bu sonucu çıkartmaya davet ediliyoruz. Bilimciler ve idealist filozoflar genel olarak nedenselliğin varolmadığını iddia etmeye devam ettiler. Bir başka deyişle, neden ve sonuç yoktur. Böylelikle doğa bütünüyle nedensiz, tesadüfi bir şey olarak görünür. Tüm evren öngörülemez bir şeydir. Hiçbir şeyden “emin olamayız”. “Bunun yerine, herhangi bir özel deneyde, elde edilecek kesin sonuçların tamamen keyfi olduğu, yani bu sonuçların dünyada şu an varolan ya da hep varolmuş olan herhangi bir şeyle ne türden olursa olsun bir ilişkisi olmadığı varsayılır.”
Bu tutum yalnızca bilimin değil aynı zamanda genel olarak akılcı düşüncenin de tamamen yadsınmasıdır. Eğer neden ve sonuç yoksa, yalnızca herhangi bir şeyi önceden kestirmek değil, herhangi bir şeyi açıklamak da mümkün değildir. Kendimizi yalnızca olan şeyi tanımlamakla sınırlayabiliriz. Ama gerçekte, bu kadarını bile yapamayız, çünkü herhangi bir şeyin kendimiz ve duyularımız dışında varolduğundan bile emin olamayız. Bu ise bizi tam da öznel idealizm felsefesine geri götürür. Bu bize antik Yunanlı sofist filozofların tartışmasını hatırlatıyor: “Dünya hakkında hiçbir şey bilemem. Bir şey bilebilsem bile anlayamam. Anlasam da anlatamam.”
“Belirsizlik ilkesinin” gerçekte ifade ettiği şey, klasik mekaniğin sade denklemlerine ve ölçümlerine uymayan atomaltı parçacıkların hareketinin anlaşılması son derece zor karakteridir. Heisenberg’in fiziğe katkısından şüphe duyulamaz. Sorun, onun kuantum mekaniğinden çıkardığı felsefi sonuçlardır. Bir elektronun konum ve momentumunu kesin olarak ölçemeyeceğimiz gerçeği en küçük bir şekilde bile, burada nesnelliğin olmadığı anlamına gelmez. Öznel düşünme tarzı kuantum mekaniğinin sözde Kopenhag ekolüne nüfuz etmiştir. Niels Bohr şunu ifade edecek kadar ileri gitmişti; “fiziğin görevi doğanın nasıl bir şey olduğunu anlamaktır diye düşünmek yanlıştır. Fizik doğa hakkında söyleyebileceklerimizle ilgilenir.”
Fizikçi John Wheeler “hiç bir olgu, gözlenmiş bir olgu olana dek gerçek bir olgu değildir” fikrini sürdürür. Ve Max Born aynı öznelci felsefeyi tam bir açıklıkla telaffuz eder:
Einstein, Bohr ve benim ait olduğum kuşak, bizden bağımsız değişmez yasalara göre serpilip gelişen nesnel bir fiziksel dünyanın varolduğunu düşünüyordu; bu süreci tiyatroda bir oyunu izleyen seyirciler gibi seyrediyorduk. Einstein hâlâ bilimsel gözlemci ile onun konusu arasındaki ilişkinin bu olması gerektiğine inanıyor.
Burada karşımızda duran şey bilimsel bir değerlendirme değil, belli bir dünya görüşünü –kuantum teorisinin Kopenhag yorumuna tümüyle nüfuz etmiş olan öznel idealizmi– yansıtan felsefi bir kanıdır. Birçok seçkin bilimci, bilimin tüm bakış tarzına ve yöntemine ters düşen bu öznelciliğe karşı durdular. Bunlar arasında Einstein, Max Planck, Louis de Broglie ve Erwin Schrödinger de vardı ve hepsi de yeni fiziğin gelişiminde en azından Heisenberg kadar önemli bir rol oynamışlardı.
MsXLabs.org
Sponsorlu Bağlantılar
Evrensel bir teori olarak Newton mekaniğinin gerçek ölüm çanları, 20. yüzyılın başlarında kuantum mekaniğinin beşiğinde duran Einstein, Schrödinger, Heisenberg ve diğer bilimciler tarafından çalınmıştı. “Elementer parçacıklar”ın davranışları klasik mekanik tarafından açıklanamıyordu. Yeni bir matematik geliştirilmeliydi.
Bu matematikte, “faz-uzayı” gibi, “operatörler” gibi önemli rol oynayan kavramlar mevcuttur. Faz-uzayında, bir sistem, koordinat olarak kendi serbestlik dereceleri olan bir nokta olarak tanımlanır. Operatörler ise, bizzat büyüklükten ziyade daha çok işleme benzemesi anlamında cebirsel büyüklüklerle uyuşmayan büyüklüklerdir (aslında sabit özellikleri değil ilişkileri ifade ederler). Olasılık da çok önemli bir rol oynar, ama “içkin olasılık” anlamında: bu kuantum mekaniğinin başlıca karakteristiklerinden biridir. Gerçekte kuantum mekanik sistemler, izleyebilecekleri tüm olası yolların üst üste binmesi olarak yorumlanmalıdırlar.
Kuantum parçacıklar ancak bu parçacıkların “fiili” ve “zımni” durumları arasındaki bir iç ilişkiler kümesi olarak tanımlanabilirler. Bu anlamda tamamen diyalektiktirler. Bu parçacıkların şu veya bu şekilde ölçülmesi sadece “aktüel” durumun açığa çıkmasına yol açar ki, bu “aktüel” durum aslında bütünün görünümlerinden yalnızca biridir (bu paradoks “Shrödinger’in kedisi” hikâyesiyle popüler bir tarzda ortaya konulur). Bu, “dalga fonksiyonunun çöküşü” olarak adlandırılır ve Heisenberg kesinsizlik ilkesiyle ifade edilir. Kuantum mekaniğinin fiziksel gerçekliğe getirdiği bu tümüyle yeni bakış tarzı, çok uzun bir süre boyunca diğer bilimsel disiplinler tarafından “karantina altında” tutuldu. İstisnai bir mekanik türü olarak, yalnızca elementer parçacıkların davranışlarını betimlemeye yarayacak bir şey olarak, klasik mekaniğin kurallarının bir istisnası olarak, herhangi bir önemi olmayan bir şey olarak görüldü.
Eski kesinliklerin yerine artık kesinsizlik hüküm sürecekti. Atomaltı parçacıkların hayal bile edilemez büyüklükteki hızlarla yaptıkları görünüşte rastlantısal hareketler, eski mekaniğin kavramlarıyla açıklanamıyordu. Bilim bir açmaza girdiğinde, artık olguları açıklayamaz hale geldiğinde, bir devrim için ve yeni bir bilimin ortaya çıkışı için zemin hazırlanmış demektir. Ne var ki, yeni bilim, başlangıçtaki biçimleri itibariyle, henüz tümüyle gelişmiş değildir. Ancak bir dönem sonra kendi nihai ve tamamlanmış biçimini ortaya koyar. Bir doğaçlama, bir belirsizlik aşaması, değişken ve sık sık birbirleriyle çelişen yorumlar aşaması, ilk başlarda hemen hemen kaçınılmazdır.
Son onyıllarda, doğanın sözde “stokastik” (“rastlantısal”) yorumuyla determinizm arasında bir tartışma başlamıştır. Temel sorun şu ki, bu tartışmada zorunluluk ve tesadüf mutlak karşıtlıklar, karşılıklı olarak birbirlerini dışlayan zıtlıklar olarak ele alınmaktadır. Böylece, her ikisi de doğanın karmaşık ve çelişik işleyişini açıklamakta yetersiz kalan iki zıt görüşe varırız.
Alman fizikçi Werner Heisenberg, kuantum mekaniğinin kendine has bir versiyonunu geliştirdi. 1932’de, matris mekaniği sistemiyle Nobel fizik ödülünü aldı. Bu mekanik, elektron orbitallerinin enerji düzeylerini yalnızca sayılar aracılığıyla, herhangi bir resme başvurmaksızın tanımlıyordu. Böylelikle “parçacık” ile “dalga” arasındaki çelişkinin neden olduğu sorunları, olguyu gözümüzde canlandırma çabalarından bütünüyle vazgeçerek ve onu saf matematiksel soyutlama içerisinde ele alarak çözmeyi ummuştu. Erwin Schrödinger’in dalga mekaniği de, Heisenberg’in matris mekaniğiyle aynı soruna yoğunlaşır, ancak mutlak matematiksel soyutlama âlemine geri çekilme ihtiyacı duymaksızın. Fizikçilerin çoğu çok daha az soyut gözüken Schrödinger’in yaklaşımını tercih ettiler ve yanılmadılar. 1944’te, Amerikalı-Macar matematikçi John von Neumann, matris mekaniğiyle dalga mekaniğinin matematiksel olarak eşdeğer olduğunu kanıtladı, ikisi de tamamen aynı sonuçları verebiliyorlardı.
Heisenberg, kuantum mekaniğinde bazı önemli ilerlemeler kaydetmişti. Ne var ki onun tüm yaklaşımına sinen şey, felsefi idealizmin kendine has damgasını bu yeni bilimin üzerine vurma azmiydi. Buradan kuantum mekaniğinin “Kopenhag yorumu” denilen şey doğdu. Bu yaklaşım gerçekten de bilimsel bir düşünce ekolü kılığına ustalıkla bürünmüş bir tür öznel idealizmdi. “Werner Heisenberg” diye yazar Isaac Asimov, “parçacıkları ve bizzat fiziği neredeyse bir bilinemezler âlemine fırlatıp atan temel bir sorunu ortaya koymaya girişti.” Kullanılacak doğru kelime budur. Burada bilinmeyenle ilgilenmiyoruz. Bu, bilimde her zaman mevcuttur. Bilimin tüm serüveni bilinmeyenden bilinene, bilgisizlikten bilgiye ilerleyiştir. Ama insanlar bilinmeyeni bilinemez ile karıştırdıklarında ciddi bir zorluk ortaya çıkar. “Bilmiyoruz” ile “bilemeyiz” sözcükleri arasında temel bir farklılık vardır. Bilim, nesnel dünyanın varolduğu ve tarafımızdan bilinebileceği temel düşüncesinden hareket eder.
Ne var ki, tüm felsefe tarihinde, şu veya bu nedenle “bilemeyeceğimiz” bazı şeylerin olduğunu iddia etmek için, insanın kavrama kabiliyetine sınır koyma çabaları yinelenip durmuştur. Bu nedenle Kant, yalnızca görünümleri bilebileceğimizi ama kendinde-şeyleri bilemeyeceğimizi iddia etmişti. Kant bu düşüncesinde aslında Hume’un şüpheciliğinin, Berkeley’in öznel idealizminin ve sofistlerin ayak izlerini takip ediyordu: Dünyayı bilemeyiz.
1927’de, Werner Heisenberg meşhur “kesinsizlik ilkesini” geliştirdi. Bu ilkeye göre, bir parçacığın konum ve hızını aynı anda istenilen bir kesinlikte belirlemek imkânsızdır. Parçacığın konumu ne kadar kesin ise, momentumu o kadar kesin değildir, ve tersi. (Bu durum diğer özgün özellik çiftleri için de geçerlidir). Farklı yönlerde saniyede 5000 mil hızla hareket eden bir parçacığın hız ve konumunu kesin olarak saptamaktaki zorluk apaçık ortadadır. Ne var ki, buradan, neden ve sonucun (nedenselliğin) genel olarak varolmadığı sonucunu çıkarmak bütünüyle yanlış bir önermedir.
Heisenberg, bir elektronun konumuna nasıl karar verebiliriz sorusunu sorar. Ona bakarak. Ama eğer güçlü bir mikroskop kullanıyorsak, bu, ona bir ışık parçacığını, yani bir fotonu çarptırdığımız anlamına gelir. Işık bir parçacık olarak davrandığına göre, kaçınılmaz olarak gözlenen parçacığın momentumunu altüst edecektir. Bu nedenle, onu tam da gözlemleme eylemiyle değiştiririz. Uyarım öngörülemez ve kontrol edilemez olacaktır, çünkü (en azından mevcut kuantum teorisinde) ışık kuantasının saçılarak merceğe gelme açısını tam olarak önceden kestirme ve kontrol edebilme imkânı yoktur. Konumun doğru belirlenmesi kısa dalga boylu ışığın kullanılmasını gerektirdiğinden, büyük ama öngörülemez ve kontrol edilemez bir momentum elektrona aktarılır. Diğer taraftan, momentumun doğru belirlenmesi, çok düşük momentumlu (ve bu nedenle de büyük dalga boylu) ışık kuantasının kullanımını gerektirir ki, bu da büyük bir kırınım açısı ve böylelikle de konumun kötü bir tespiti anlamına gelir. Konum ne kadar doğrulukla saptanırsa, momentum o kadar az bir doğrulukla tanımlanabilir, ve tersi.
Peki bu sorundan yeni elektron mikroskopları geliştirerek kurtulabilir miyiz? Heisenberg’in teorisine göre hayır. Tüm enerji kuantalarla taşındığına ve tüm maddeler hem bir dalga hem de bir parçacık olarak davranma özelliğine sahip olduğuna göre, kullandığımız her tip aygıt bu kesinsizlik (ya da belirsizlik) ilkesinin hükmü altında olacaktır. Aslında, kesinsizlik ilkesi kavramı yanlıştır, çünkü burada ileri sürülen şey yalnızca, ölçme sorunlarından ötürü kesin hükümlere varamayacağımız değildir. Teori, maddenin tüm biçimlerinin tam da kendi doğasından ötürü belirsiz olduğunu ima etmektedir. David Bohm Modern Fizikte Nedensellik ve Tesadüf adlı kitabında şunları söylüyor:
Böylelikle kuantum teorisinin alışılmış yorumlarında nedensellikten vazgeçilmesi, yalnızca atomik düzeydeki nedensellik yasalarının kapsamına girebilecek değişkenlerin tam değerlerini ölçmekteki aczimizin bir sonucu olarak değil, daha ziyade böyle yasaların varolmadığı gerçeğinin bir yansıması olarak düşünülmelidir.
Heisenberg, belirsizliği, gelişiminin özel bir aşamasında kuantum teorisinin özgün bir görünümü olarak görmektense, doğanın temel ve evrensel bir yasası olarak postüla etti ve doğanın diğer tüm yasalarının bununla uyum içerisinde olması gerektiğini kabul etti. Bu yaklaşım, bilimin geçmişte düzensiz dalgalanmalar ve tesadüfi hareketlerle ilişkili sorunlarla karşı karşıya kaldığı andaki yaklaşımından tamamen farklıdır. Hiç kimse, bir gazın içindeki tekil bir molekülün kesin hareketini belirlemenin ya da özel bir araba kazasının tüm ayrıntılarını önceden kestirmenin mümkün olduğunu düşünmez. Ama böylesi olgulardan genel olarak nedenselliğin varolmadığı sonucunu çıkarmaya kalkışan bir girişim daha önce asla söz konusu olmamıştı.
Ama yine de, belirsizlik ilkesinden tam da bu sonucu çıkartmaya davet ediliyoruz. Bilimciler ve idealist filozoflar genel olarak nedenselliğin varolmadığını iddia etmeye devam ettiler. Bir başka deyişle, neden ve sonuç yoktur. Böylelikle doğa bütünüyle nedensiz, tesadüfi bir şey olarak görünür. Tüm evren öngörülemez bir şeydir. Hiçbir şeyden “emin olamayız”. “Bunun yerine, herhangi bir özel deneyde, elde edilecek kesin sonuçların tamamen keyfi olduğu, yani bu sonuçların dünyada şu an varolan ya da hep varolmuş olan herhangi bir şeyle ne türden olursa olsun bir ilişkisi olmadığı varsayılır.”
Bu tutum yalnızca bilimin değil aynı zamanda genel olarak akılcı düşüncenin de tamamen yadsınmasıdır. Eğer neden ve sonuç yoksa, yalnızca herhangi bir şeyi önceden kestirmek değil, herhangi bir şeyi açıklamak da mümkün değildir. Kendimizi yalnızca olan şeyi tanımlamakla sınırlayabiliriz. Ama gerçekte, bu kadarını bile yapamayız, çünkü herhangi bir şeyin kendimiz ve duyularımız dışında varolduğundan bile emin olamayız. Bu ise bizi tam da öznel idealizm felsefesine geri götürür. Bu bize antik Yunanlı sofist filozofların tartışmasını hatırlatıyor: “Dünya hakkında hiçbir şey bilemem. Bir şey bilebilsem bile anlayamam. Anlasam da anlatamam.”
“Belirsizlik ilkesinin” gerçekte ifade ettiği şey, klasik mekaniğin sade denklemlerine ve ölçümlerine uymayan atomaltı parçacıkların hareketinin anlaşılması son derece zor karakteridir. Heisenberg’in fiziğe katkısından şüphe duyulamaz. Sorun, onun kuantum mekaniğinden çıkardığı felsefi sonuçlardır. Bir elektronun konum ve momentumunu kesin olarak ölçemeyeceğimiz gerçeği en küçük bir şekilde bile, burada nesnelliğin olmadığı anlamına gelmez. Öznel düşünme tarzı kuantum mekaniğinin sözde Kopenhag ekolüne nüfuz etmiştir. Niels Bohr şunu ifade edecek kadar ileri gitmişti; “fiziğin görevi doğanın nasıl bir şey olduğunu anlamaktır diye düşünmek yanlıştır. Fizik doğa hakkında söyleyebileceklerimizle ilgilenir.”
Fizikçi John Wheeler “hiç bir olgu, gözlenmiş bir olgu olana dek gerçek bir olgu değildir” fikrini sürdürür. Ve Max Born aynı öznelci felsefeyi tam bir açıklıkla telaffuz eder:
Einstein, Bohr ve benim ait olduğum kuşak, bizden bağımsız değişmez yasalara göre serpilip gelişen nesnel bir fiziksel dünyanın varolduğunu düşünüyordu; bu süreci tiyatroda bir oyunu izleyen seyirciler gibi seyrediyorduk. Einstein hâlâ bilimsel gözlemci ile onun konusu arasındaki ilişkinin bu olması gerektiğine inanıyor.
Burada karşımızda duran şey bilimsel bir değerlendirme değil, belli bir dünya görüşünü –kuantum teorisinin Kopenhag yorumuna tümüyle nüfuz etmiş olan öznel idealizmi– yansıtan felsefi bir kanıdır. Birçok seçkin bilimci, bilimin tüm bakış tarzına ve yöntemine ters düşen bu öznelciliğe karşı durdular. Bunlar arasında Einstein, Max Planck, Louis de Broglie ve Erwin Schrödinger de vardı ve hepsi de yeni fiziğin gelişiminde en azından Heisenberg kadar önemli bir rol oynamışlardı.
Son düzenleyen _Yağmur_; 30 Mayıs 2013 14:52
Sebep: Sayfa düzeni/aktif linkler