Hoş geldiniz sayın ziyaretçi Neredeyim ben?!

Web sitemiz; forum, günlük, video ve sohbet bölümlerinin yanı sıra; Skype ile ilgili Türkçe teknik destek makaleleri, resim galerileri, geniş içerikli ansiklopedik bilgiler ve çeşitli soru-cevap konuları sunmaktadır. Daima faydalı olmayı ilke edinmiş sitemize sizin de katkıda bulunmanız bizi son derece memnun eder :) Üye olmak için tıklayınız...


Sohbet (Flash Chat) Forumda Ara

Işık Nedir? Işık Yasaları ve Kuramları Hakkında

Bu konu Fizik forumunda asla_asla_deme tarafından 1 Kasım 2008 (14:07) tarihinde açılmıştır.FacebookFacebook'ta Paylaş
33482 kez görüntülenmiş, 3 cevap yazılmış ve son mesaj 5 Temmuz 2012 (14:40) tarihinde gönderilmiştir.
  • 5 üzerinden 3.52  |  Oy Veren: 21      
Cevap Yaz Yeni Konu Aç
Bu konuyu arkadaşlarınızla paylaşın:    « Önceki Konu | Sonraki Konu »      Yazdırılabilir Sürümü GösterYazdırılabilir Sürümü Göster    AramaBu Konuda Ara  
Eski 1 Kasım 2008, 14:07

Işık Nedir? Işık Yasaları ve Kuramları Hakkında

#1 (link)
Never Say Never Agaın
asla_asla_deme - avatarı
Çevremizdeki bütün canlı ve cansız varlıkları, yaşadığımız dünyayı ve içinde bu­lunduğumuz evrenin yıldızlarını, gezegenleri­ni görmemizi sağlayan ışıktır. Bir cismi ya kendisi ışık yaydığı ya da başka bir cismin ışığını yansıttığı için görebiliriz. Kendi ürettiği ışığı yayan cisimler, örneğin Güneş, yıldızlar, alev ve elektrik ampulü birer ışık kaynağıdır. Oysa karanlık gökyüzünde parlayan Ay ve gezegenler yalnızca Güneş'in ışığını yansıttık­ları için görülebilir.
Bilim adamlarının yüzlerce yıllık araştırma­ları sonucunda ışığın belirli fizik yasalarına uygun olarak davrandığı bulunmuş ve ışığın t için çeşitli kuramlar yapısını açıklayabilme geliştirilmiştir.

85019155xk3


Işık Yasaları

Işığın davranış özelliklerini açıklayan ilk yasa­lardan biri yansıma yasasıdır. İS 1. yüzyılda yaşamış olan Eski Yunan bilginlerinden İs­kenderiyeli Heron, aynadan yansıyan bir ışık ışınının aynayla yaptığı gelme ve yansıma açılarının eşit olduğunu bulmuştu. Bundan yüzyıllar sonra Hollandalı fizikçi Willebrord Snell 1621'de ışığın çok önemli bir başka özelliğini saptadı. Saydam bir ortamdan baş­ka bir saydam ortama örneğin havadan cama ya da sudan havaya geçerken ışığın doğrultu­su değişiyordu. Kırılma denen bu olayın nedeni, ışığın her saydam ortamdaki hızının farklı olmasıdır; örneğin ışığın sudaki hızı havadaki hızından daha azdır. Doğal olarak cam da ışığı kırar. Pencerenin dışındaki bir cisimden gelen ışık bir kez cama girerken, bir kez de camdan çıkarken kırılır. Çünkü ilkinde havadan cama, ikincisinde de camdan havaya geçerek iki kez ortam değiş­tirmiştir. Bu durumda cisimden gelen ışığın gözümüze ulaşıncaya kadar doğrultusundan iyice sapmış olması gerekir. Oysa camın iki yüzeyi birbirine paralel olduğu için, camdan çıkan ışık ışını cama giren ışıkla aynı doğrultu­da yol alır. Bu nedenle, pencere ya da otomobil camı gibi düz bir camın arkasındaki cisimleri yer değiştirmiş olarak değil, gerçek­ten bulundukları noktada görürüz.
Ama camın yüzeyleri paralel olmadığı za­man içinden geçen ışık ışınlarının doğrultusu değişir. Demek ki camın yüzeylerine belli bir eğiklik verilerek, gelen ışık ışınlarını bir araya toplaması ya da birbirinden uzaklaştırması sağlanabilir. Bu amaçla biçimlendirilmiş cam­lara mercek denir. Işık ışınlarını bir araya toplayan yakınsak merceklerin en az bir yüzeyi dışbükey, ışık ışınlarını uzaklaştıran ıraksak merceklerin de gene en az bir yüzeyi içbükeydir. Mercekler gözlük, büyüteç, fo­toğraf makinesi, mikroskop, teleskop gibi optik aygıtların temel öğelerinden biridir
Üzerine düşen ışığın hemen hemen tümünü geçiren maddelere saydam, bir bölümünü geçirenlere de yarısaydam denir. Saydam olmayan maddeler gelen ışığın bir yandan öbür yana geçmesine izin vermediğinden bu ci­simlerin arkasını göremeyiz. Bu tip maddeler ya bütün ışığı soğurduğu için donuk (mat) ya da bütün ışığı yansıttığı için parlak görünür.
Beyaz ışık kırıldığı zaman çeşitli renklere ayrılır. Bu olayın nedenini 1666'da İngiliz bilim adamı Sir Isaac Newton açıklamıştır. Nevvton bir güneş ışığı demetini karanlık bir odada bir prizmadan geçirdiğinde, bildiğimiz beyaz ışık cam prizmanın öbür yüzünden çıkarken mor, lacivert, mavi, yeşil, sarı, turuncu ve kırmızı renkli ışınlara ayrılmıştı. Bu renkli ışın demetine tayf denir. Gene Newton'ın deneylerine göre, bu ışık tayfı tersine çevrilmiş ikinci bir prizmadan geçiril­diğinde yeniden beyaz ışık demetine dönüşü­yordu. Ama tayftaki renkli ışınlardan yalnızca biri, örneğin kırmızı ışık ikinci prizmadan geçirildiğinde hiçbir değişikliğe uğramıyordu.
Bu bulgulardan yola çıkan Nevvton, beyaz ışığın gerçekte gökkuşağındaki bütün renkle­rin karışımından oluştuğu sonucuna vardı. Beyaz ışığın prizmadan geçerken bileşenleri­ne ayrılmasının nedeni, yapısındaki her ren­gin değişik açılarda kırılmasıdır. Örneğin mavi ışınlar kırmızı ışınlardan daha büyük bir açı altında kırılır. TAYF maddesinde bu ilginç konuyla ilgili daha çok bilgi bulabilir­siniz.
Bir cismin rengi, tayfın hangi bölgesindeki ışınları yansıttığına bağlıdır. Bütün renkleri yansıtan cisimler beyaz, bütün renkleri soğu­ran ya da yutan cisimler siyah görünür. Beyaz ışıkla aydınlandığında en çok tayfın yeşil bölgesindeki ışığı yansıtıp öbürlerini soğurdu­ğu için yeşil renkte görünen otlar da, içinde hiç yeşil bulunmayan bir ışıkla aydınlatıldığın­da pek az ışık yansıtacağı için siyaha yakın koyu renkte olacaktır.
Snell'in kırılma yasasını açıklamasından 40 yıl kadar sonra İtalyan fizikçi Francesco Grimaldi (1618-63) ışığın en önemli davranış özelliklerinden biri olan kırınım olayını bul­du. Işığın kırınımını, bir sel yatağında akan suyun yolunun üzerindeki bir taşın çevresin­den dolanarak akmasına benzetebiliriz. Işık da bir engelle karşılaştığında hafifçe bükülür ve keskin bir dönüş yapmasa da köşeleri açık­tan dolanarak yoluna devam eder. Gene de birçok durumda ışığın düz bir çizgi boyun­ca yayıldığını kabul edebiliriz. Işık bu biçimde yayıldığında, bir yüzeydeki aydınlık ve karan­lık bölgeler arasında belirgin bir sınır çizgisi­nin olması gerekir. Oysa titiz bir deney bunun böyle olmadığını gösterecektir. Noktasal de­necek kadar küçük bir delikten geçerek ka­ranlık bir odaya giren ışık bir ekran üzerine düşürüldüğünde, bu yuvarlak ışık lekesini çevreleyen kenar çizgisinin hiç de keskin olmadığı görülür. Ekrandaki ışıklı daire ile gölgeli bölümlerin arasında, aydınlık ve ka­ranlık çemberlerden oluşmuş, bulanık görü­nümlü dar bir kuşak vardır.
Aynı şey gölgeler için de söz konusudur. Bir cisim ne kadar küçük bir ışık kaynağıyla aydınlatılırsa aydınlatılsın, ışığın cismin ke­narlarında kırınıma uğraması nedeniyle göl­gesinin sınırları hiçbir zaman çok keskin olmaz. Bu kırınım olayını açıklamanın tek yolu, ışığın mutlak olarak düz bir çizgi boyun­ca yayılmadığını, hafifçe bükülerek bir enge­lin köşesinden geçebildiğini kabul etmektir.

Işık Kuramları

k1dh8

Işığın yansıması, kırılması ve renklerine ayrıl­ması gibi davranış özelliklerini ortaya koyan ilk çalışmalar, ışığın yapısını açıklığa kavuşturabilmeleri için bilim adamlarına çok değerli veriler sağlamıştı. Nitekim, kuramsal ve de­neysel çalışmalarıyla bu konunun öncülerin­den olan Newton, ışığın parçacıklardan ya da taneciklerden oluştuğunu ileri sürerek ışığın parçacık kuramı'm ortaya attı. Bu görüşe göre ışık parçacıkları minicik mermilere, ışık kaynağı da bu mermilerle yayılım ateşi yapan bir tüfeğe benzetilebilir. Ne var ki Nevvton'ın kuramı ışığın birçok davranışını açıklamakta yetersiz kaldı. Yansıma olayı bu kuramla açıklanabilirdi; ama kırılma olayını açıklaya­bilmek için ışığın sudaki hızının havadaki hızından daha büyük olduğunu kabul etmek gerekiyordu. Fransız fizikçi Leon Foucault' nun 1850'de çok sağlam bir deneyle bunun tam tersini kanıtlaması parçacık kuramının güvenilirliğini büyük ölçüde sarstı. Kaldı ki bu kuram Nevvton'ın zamanında bile bilinen kırınım olayını da açıklayamıyordu.
Newton ile aynı dönemde yaşamış olan Hollandalı bilim adamı Christiaan Huygens, parçacık kuramından birkaç yıl sonra, ışığın yapısını açıklayan yeni bir kuram geliştirdi. Eskiçağlardan beri fizikçiler bütün uzayın ağırlıksız, saydam ve esnek bir maddeyle dolu olduğuna inanıyorlardı. Huygens de ışığın dalga kuramı'nı geliştirirken "esir" denen bu maddenin varlığını temel almıştı. Bu kurama göre, havuza atılan bir taşın su yüzeyini dalga­landırması gibi, ışıklı bir parçacık da çevresini saran esirde her yöne dağılan bir dalga hare­ketini başlatıyordu. Işığın her zaman düz bir çizgi boyunca yayıldığına inanan Nevvton bu görüşe karşı çıktı. Bilinen bütün dalgalar, ör­neğin su ve ses dalgaları bir engelin çevresin­den dolanabildiğine göre, dalgalardan oluşan ışığın da eğri bir yol izleyerek aynı şeyi yapa­bilmesi gerekirdi. Nevvton dalga kuramına bu savla karşı çıkarken kırınım olayını iyi değer­lendirememiş ve ışığın da öbür dalgalar gibi gereğinde bükülebildiğinin bir kanıtı olduğu­nu fark edememişti. Ne var ki, ışığın dalga boyu çok kısa olduğu için bu bükülmenin so­nuçlarını gözleyebilmek öbür dalgalara oranla çok daha güçtür.
Işığın dalgalardan mı, yoksa parçacıklardan mı oluştuğu konusu neredeyse 150 yıl tartışıl­dı. En sonunda İngiliz fizikçi Thomas Young, 19. yüzyılın başlarında yaptığı bir deneyle bu tartışmalara son verdi. Kesinlikle dalgalara özgü olan girişimin ışıkta da gözlendiğini orta­ya koyan bu deneydejn sonra parçacık kuramı yavaş yavaş bilim dünyasından çekildi.

Işık Nedir?
Fotoelektrik etkinin bulunmasından sonra bi­lim adamları, ışığın parçacıklara çok benze­yen davranış özellikleri gösterdiğini bir kez daha kabul etmek zorunda kaldılar. Öte yan­dan ışığın belirgin dalga özellikleri de göz ardı edilemiyordu. Böylece ışığın parçacık kuramı bu kez foton adıyla yeniden gündeme geldi. Ama ışığın girişim, polarılma ve kırınım gibi önemli özelliklerinin Fotonlara dayanan açık­laması henüz tam olarak yapılamamıştır.
Bugün bilim adamları ışığın hem parçacık, hem dalga gibi davrandığını kabul ediyorlar. Bu davranışlardan herhangi birini, örneğin ışığın dalga hareketini kanıtlamak üzere yapı­lan bir deney mutlaka bu amaca uygun sonuç­lanır. Ama, ışığın fotan kuramına uygun ola­rak davrandığını göstermek üzere yapılan de­neyler de bu kez bu beklentiyi doğrular.
Görüldüğü gibi, "ışık nedir?" sorusuna he­nüz tam anlamıyla doyurucu bir yanıt verile­bilmiş değildir. Işığın bütün özelliklerini yal­nızca dalga hareketiyle ya da yalnızca parça­cıklarla açıklayabilir ek en azından şimdilik olanaksızdır.



MsxLabs & TemelBritannica
Etiketler:
  • isigin kanunlari nelerdir
  • isigin ozellikleri kisaca
  • isigin ozellikleri nelerdir
  • isigin yapisi fizik
  • isigin yapisi nasildir
Benzer Konular:
Rapor Et
Reklam
Eski 26 Nisan 2011, 14:49

Işık Nedir? Işık Yasaları ve Kuramları Hakkında

#2 (link)
07anil
Ziyaretçi
07anil - avatarı
Işık, doğrusal dalgalar halinde yayılan elektromanyetik dalgalara verilen addır. 380 - 750 nm. dalga boyları arası dalgaboyu gözle görülebilir ancak bilimsel terminolojide gözle görünmeyen dalga boylarına da ışık denilebilir. Işığın özellikleri, radyo dalgalarından gamma ışınlarına kadar gidebilen, elektromanyetik dalganın boyuna göre değişir.
Keşfedilen ilk görünmez ışınım, 1800 yılında William Herschel tarafından rastlantıyla bulunan kızılötesi ışınımdır. Herschel, güneş ışığını bir prizmadan geçirerek tayf renkleri olarak adlandırılan kırmızı, turuncu, sarı, yeşil, mavi, lacivert ve mor renkleri incelerken çok ilginç bir şeyle karşılaşır. Her rengin sıcaklığını ayrı ayrı termometreyle ölçerken, kırmızı rengin ötesinde termometrenin yükseldiğini görür. Bu şekilde yayılan ısının da kırmızı ışık gibi bir ışık türü olduğunu, ama insan gözüyle görülmediğini istemeden de olsa göstermiş olur. William bu keşfine kızılötesi ışınım adını verir. Bu keşiften sonra tayfın diğer ucunda yer alan ve morötesi ışık olarak adlandırılan, görünmez ışık da fotoğraf kartı üzerindeki etkisi sayesinde keşfedilir.
Ana dalga boyu bantları, dalga boyu uzunluklarına göre büyükten küçüğe doğru şöyle sıralanır:
Radyo-Mikrodalgalar- milimitre altı- uzak kızılötesi- yakın kızılötesi- görünür dalgalar- morötesi- yumuşak x ışınları- sert x ışınları- gamma ışınları
Işığın, ve tüm diğer elektromanyetik dalgaların temel olarak üç özelliği vardır:
  • Frekans: Dalgaboyu ile ters orantılıdır, insan gözü bu özelliği renk olarak algılar.
  • Şiddet: Genlik olarak da geçer, insan gözü tarafından parlaklık olarak algılanır.
  • Polarite: Titreşim açısıdır, normal şartlarda insan gözü tarafından algılanmaz.
Işığın kütlesi vardır. Işığın daha doğrusu ışığı oluşturan parçacıkların yani fotonların kütlesi vardır.
Karanlık bir yerde göremeyiz; tıpkı Albert Einsteinin dediği gibi "Karanlık diye bir şey yoktur, karanlık ışığın yokluğudur". Işık kaynakları olmadan ışık da olamaz ve ışık kaynakları bize kendiliklerinden gözükürler. Onun için fizik dilinde ışık kaynağı denir. Onlardan kaynaklanan ışığın aracılığıyla gördüğümüz cisimlere de karanlık cisimler adını veririz. Karanlık cisimler, ışık kaynağından çıkan ışınların yansıması sonucu bize gözükür. Işık kaynağı ile karanlık cisimlerin arasına koyduğumuz cam, su gibi cisimler, bu karanlık cisimleri görmemizi engellemez.
Işık bizim görebilmemizin ana nedenidir. Eğer ışık olmasaydı hiçbir şey göremezdik. Çünkü görme işleminde ışık kaynağından çıkan ışınlar etrafımızdaki cisimlere çarparak gözümüze ulaşırlar da o narin göz bebeğimiz onları birer birer içeri buyur edip retinada ağırlar. Daha sonra retinaya körü körüne bağlı sinirler aracılığı ile burada oluşan görüntü, işlenmesi ve yorumlanması için beyne yollanır. Fakat 1600'lü yıllarda ışık ışınlarının gözümüzden çıkıp diğer cisimlere çarpıp geri geldiğine ve böylece görebildiğimize inanılırdı.

Işık; foton denilen kütlesiz (ağırlıksız değil, kütlesiz) ve yüksüz atom-altı parçacıklardan oluşur.
Tüm parçacıklar gibi fotonlar da dalga özelliği gösterirler. Yani bir dalga boyları ve bir frekansları vardır. Işık ışınları da fotonların ilerlerken aldıkları yoldan başka bir şey değildirler. Fotonlar kaynaklarından çıktıktan sonra -eğer önlerinde hiçbir engel yoksa- düz doğrultuda ve hiç sapmadan yayılırlar. Herhangi bir cisme çarpınca da cismin şeffaf olup olmamasına göre yansır veya kırılırlar.
Günümüzde ışığın hareketi, dual (ikili, çift) model denilen dalga ve parçacık teorilerinin birleşmesinden oluşmuş bir teori ile açıklanmakta. Açıklama kısaca şöyle: Işık dalga özelliği gösteren fotonlardan oluşmuştur. Ve yayılırken iki özelliği de gösterebilir. Ama kesinlikle ikisini bir arada değil! Bazen dalga bazen de parçacık olarak yayılır ışık. Ama hangi hallerde parçacık hangi hallerde dalga olarak yayıldığı konusunda hiçbir bilgimiz yok. Ama şunu biliyoruz ki biz onu dalga olarak görmek istiyorsak dalga, parçacık olarak görmek istiyorsak parçacık olarak davranır.

Algılama
İnsan tarafından renklerin algılanması; ışığa, ışığın cisimler tarafından yansıtılışına ve nesnenin göz yardımıyla beyne iletilmesi sayesinde gerçekleşir.
Göz tarafından algılanan ışık, retinada sinirsel sinyallere dönüştürülüp, optik sinir aracılığıyla beyine iletilir. Göz, üç temel birleştirici renk olan; kırmızı, mavi ve yeşile tepki verir ve beyin, diğer renkleri bu üç rengin farklı kombinasyonları olarak algılar. Renklerin algılanışı dış koşullara bağlı olarak değişir. Aynı renk güneş ışığında ve mum ışığında farklı algılanacaktır. Fakat, insanın görme duyusu ışığın kaynağına uyum sağlayarak, bizim her iki koşuldakinin de aynı renk olduğunu algılamamızı sağlar.
Tat alma, duyma, dokunma ve diğer duyularımızda da olduğu gibi, renklerin algılanışı da özneldir. Bir renk sıcak, soğuk, ağır, hafif, yumuşak, kuvvetli, heyecan verici, rahatlatıcı, parlak veya sakin olarak algılanabilir. Ancak bu tanımlama, kişinin, kültür, dil, cinsiyet, yaş, çevre veya deneyimlerinden kaynaklanır. Kısaca, herhangi bir renk, iki ayrı insanda aynı duyguları uyandırmayacaktır. İnsanları gamma ışınına duyarlılıklarıyla da birbirlerinden ayırmak mümkündür.
Rapor Et
Eski 25 Nisan 2012, 16:26

Işık Nedir?

#3 (link)
Misafir
Ziyaretçi
Misafir - avatarı
Çevremizdeki cisimleri görmemize ve renkleri ayırd etmemize yarayan enerji şekli.

Işığın yapısı
şığın ilk teorileri metafizik fikirlerin tesiri altında o kadar kalmıştı ki, ışığı anlamada bu fikirler herhangi bir fayda getirmemiştir. On yedinci yüzyılda Avrupa'da genel kanaat, ışık kaynağından göze bir şey taşındığı veya yayıldığı şeklindeydi. Bu tür düşünce tarzı iki farklı fikrin meydana gelmesine sebep oldu. Bunlardan birincisi; "Işık, doğru boyunca çok hızlı hareket eden küçük zerreciklerden ibarettir." şeklindeydi. Bunu destekleyen en yaygın gözlem, ışığın önüne konan cisimlerin gölgelerinin meydana gelmesiydi. İkinci hipotez ise, ışığı bir dalga şeklinde kabul etmekteydi. Bunu destekleyen gözlem ise, birbirlerini kesen iki ışık hüzmesinin birbirlerinden etkilenmemeleriydi. Bu hipoteze göre ışık eğer maddeciklerden (zerreciklerden) ibaret olsaydı, söz konusu iki ışık hüzmesinin birbirinden etkilenmeme halinin mümkün olmayacağı düşünülmekteydi. Ancak bu ilk fikirler, uygun matematik metodlarının ve deney tekniklerinin eksik olması sebepiyle ilerleme gösterememiştir.
Isaac Newton (1642-1727) beyaz güneş ışığının kırmızıdan mora kadar tam bir renkler grubundan ibaret olduğunu göstermiştir. Bu konuda Newton'dan çok önceleri, İslam aleminin yetiştirdiği fen alimlerinden İbn-i Heysem (965-1051)de çalışmalar yapmıştır. Hatta ekseri ilim adamları onun modern anlamdaki geometrik optiğin kurucusu olduğunu, ışığın yansıma ve kırılma kanunlarını ilk defa bulduğunu kabul etmektedirler. Newton, ışığın kırılmasını, daha yoğun bir ortama girerken ışığı meydana getiren parçacıkların hızının arttığı şeklinde açıklamıştır. Ayrıca, ışığın, saydam ortamların yüzeyinden kısmen yansıyıp kısmen de kırılmasını, ışık taneciklerinin zamanla periyodik olarak değişen bir özelliği olduğunu kabul ederek açıklamaya çalıştı. Kendi adı verilen ve bir girişim olayı olan Newton halkalarını ilk defa bulduysa da, bunların dalga teorisindeki önemini fark edememiştir. Newton'un bu tanecik teorisi ışığın bir engele rastlayınca kırınıma (difraksiyon) uğraması ve benzer olayları açıklamaktan uzak kalmıştır.
Newton ile aynı devrede yaşayan Christian Huygens (1629-1695) yaptığı çalışmalarıyla, dalga teorisini kabul edilen seviyeye getirmiştir. Huygens prensibi olarak isimlendirilen basit bir ilkenin kabulü ile yansımayı, kırılmayı ve tam yansımayı açıklamak mümkündü. Kendisi aynı zamanda çifte kırılmayı incelemiş ve bu olayı doğru bir şekilde açıklamak için ilk temeli atmıştır. Huygens'in ışığın kırılmasını açıklamasında, ışık hızının yoğun ortamda havadakine göre daha az olduğunu kabul etmek gerekiyordu. (Bkz. Huygens, Christian).
Optik ilmi, 19. yüzyıla kadar önemli bir ilerleme kaydetmemişti. 1801'de Thomas Yougn aynı bir yüzeye düşen ışık ışınlarının birbirlerini yok edebilip, karanlık bölgeler meydana getirebileceğini göstermiştir. Bu ise dalga teorisini desteklemekteydi. Çünkü iki parçacık akışının birbirlerini yok edebileceği mümkün görülmemekteydi. Young, ışık dalgalarının titreşimlerinin birbirine ve hareket doğrultusuna dik olduğunu öne sürmüştür. Bu şekilde ışığın polarizasyonunu açıklamaya çalışmıştır. Augustin Fresnel'in de çalışmalarıyla dalga teorisi daha çok rağbet gördü. Kendisi ayrıca ışık hızının yoğun ortamlarda daha düşük olduğunu deneysel olarak göstermiştir.
Bu arada elektrik ve manyetizma konusunda da ilerleme kaydedilerek ikisini bir teoride toplama çalışmaları ilerlemiştir. 1864'te bir İngiliz fizikçisi olan James Clerk Maxwell, yeni bir teori ortaya atarak, elektrik ve manyetik olaylarını beraberce açıkladı. Tamamen teorik yolla, bir elektrik devresinin bazı durumlarda enine dalgaları uzaya yayacağını ortaya koydu. Buraya kadar Maxwell'in teorisinin ışıkla, doğrudan bir ilgisi yoktur. Ancak, ışığın ölçülen hızının, sadece manyetik ve elektrik ölçülerden elde edilen teorik elektromanyetik dalgalarının hızı ile aynı olduğu bulundu. Yaklaşık yirmi yıl sonra Heinrich Hertz, elektromanyetik dalgalar üzerine yaptığı deneylerden, bunların ışık dalgaları ile aynı özelliğe, fakat buna karşılık daha büyük dalga boylarına sahip olduklarını gösterdi. Bunlar ve diğer bir çok fizikçiler ışığın bir elektromanyetik radyasyon olduğunu ortaya koydu.

Dalga olarak ışık
Işığın dalga şeklindeki yapısı gözlendikten sonra, sorular dalganın ne olduğu konusuna yöneldi. Bütün mekanik dalga hareketleri, bir ortamın düzenli periyodik titreşimini gerektirdiğinden, ışığın boşlukta da yayılması için maddi bir ortamın bulunması gerektiği sonucuna vardılar. Böylece tamamen tasavvur olan Ether'in varlığını kabul ettiler. Kabullere göre Ether, bütün uzayı doldurmakta ve elektromanyetik dalga yayılışını mümkün kılmaktaydı.
Diğer tür dalga hareketleri ile ışığınki kıyaslanarak, dünyanın Ether içindeki hareketinin, hareket yönünde ve ona dik yönde ışığın hızını değiştireceği sonucu ortaya kondu. Ancak 1887'de yapılan hassas deneyler böyle bir farklılığın olmadığını ve ışığın her yöndeki hızının aynı olduğunu gösterdi. Bu elde edilen sonuç Albert Einstein'in "İzafiyet Teorisi" (Rölativite Teorisi)nin doğmasına sebep oldu. Enerji parçacığı olarak ışık: Bu arada dalga teorisiyle açıklanamayan bazı olaylar ortaya çıktı. Atom fiziği ile ilişkili olan bu deneyler ise ışığın foton, (enerji yüklü parçacıklar) şeklinde yayıldığına işaret etmekteydi. Bu ise eski teoriye dönüşü gerektirmekteydi. Ancak, bu ikisi Kuantum Teorisi'yle bir araya getirilmiştir (Bkz. Kuantum). Kuantum Teorisi, dalga teorisinde değişiklik meydana getirmemekte, ışık yayılışında, dalga biçiminde olduğu halde, maddeyle olan karşılıklı ilişkilerinde enerji kuantası şeklinde davranmaktadır.

Işığın hızı
İlk ölçümler, ışığın hızının, sesinkinden çok fazla olduğunu ortaya koymakla kaldı. İlk başarılı ölçüm 1676'da Danimarkalı astronom Roemer tarafından yapılmıştır. Jüpiterin uydularının bazen yavaş ve bazen hızlı hareket ettiklerini gözlemiş ve bunun Dünya ile Jüpiter arasındaki mesafenin değişmesinden olduğunu keşfetmişti. Bu kabullerle yaptığı hesaplar sonucu ışığın yaklaşık olarak dünyanın yörüngesinin çapı olan 300.000.000 km'yi 1000 saniyede aldığını gözlemiştir. 1849'da A.H.L. Fizeau yaptığı deneyde ise, ışık sürekli açılıp kapanan bir delikten geçirilmekte ve uzak bir aynadan yansıtıldıktan sonra, tekrar eğer delik açık ise, ışık geçebilmekte, yoksa arada kalmaktadır. Fizeau, bir dişli çarkı çevirerek dişlerinin arasındaki aralıkları açılıp kapanan delik olarak kullanmıştır. Işık bir aradan geçip aynaya gitmekte ve aynadan yansıyıp geldiğinde, çarkın devri uygun olduğunda, müteakip aralıktan geri dönmektedir. Mesafe ve çarkın dönme hızının bilinmesiyle ışık hızı hesaplanabilir. Fizeau, yaptığı hesaplar sonucunda ışığın hızını saniyede 313.300 km olarak ortaya koymuştur.
1862'de J. B.L. Foucault, Fizeau'nun deney düzenini geliştirmiş, dönen dişli çark yerine dönen ayna kullanarak hızı, saniyede 298.000 km olarak bulmuştur.
Daha sonra yapılan ölçümler ışığın, boşluktaki hızının 299.792 km/saniye olduğunu ortaya koymuştur. Işığın boşluktaki hızı, diğer bütün ortamlardaki hızlarından daha büyüktür. Bu hız, camdaki hızının 1,5-1,8 katı ve sudaki hızının 1,33 katı civarındadır.

Işık ve renk
Renk terimi iki anlamda kullanılır. Fizik bakımından dalgaların frekansları ve şiddetleriyle belirlenir. Fizyolojik bakımdan göze gelen bu dalgalar tarafından uyandırılan etkiye bağlıdır. Görünür ışınlar, yaklaşık olarak 4000-7000 Angstrom dalga boyları arasındaki ışınlardan meydana gelir. Bu ışınlar; kırmızı, turuncu, sarı, yeşil, mavi, lacivert ve mordan hasıl olan bir spektrum tayfı meydana getirirler. İnsan gözü en çok sarı-yeşil (5500 A°) ışığa duyarlıdır. Ultra-viole (morötesi) ışınları 4000 Angstromdan 3000 Angstroma kadar uzanır. Enfraruj (kızılötesi) ışınları 7000-15000 Angstrom arasında yer alır.
Güneş ışığı, yani beyaz ışık saydam bir prizmadan geçirilerek ekran üzerine düşürülürse, ekran üzerindeki ışığın beyaz olmadığı ve gökkuşağındaki yedi renge ayrıldığı görülür.
Beyaz ışığın prizmadan geçerken yedi değişik renge ayrılmasının sebepi, beyaz ışığı meydana getiren farklı dalga boylarındaki renklerin prizmadan geçerken değişik oranlarda kırılarak birbirlerinden ayrılmasıdır. Bundan da anlaşılacağı gibi beyaz ışık, tek bir renk değil, bir çok renklerin birleşmesinden meydana gelen bir renktir.
Işık kaynağı olmayan cisimlerin renkleri, üzerlerine düşen ışığın rengine bağlı olarak değişir. Bir cismin rengi, beyaz ışık içindeki renklerden geçirdiği veya yansıttığı renktir.

Renkler ve Yaklaşık Dalga Boyları
Mor ........................................................................ 3800-4400 A°
Lacivert .................................................................. 4400-4800 A°
Mavi....................................................................... . 4800-5200 A°
Yeşil...................................................................... .. 5200-5600 A°
Sarı ........................................................................ 5600-5900 A°
Turuncu .................................................................. 5900-6300 A°
Kırmızı .................................................................... 6300-7800 A°


Kaynak:
Işık - Nedir
Rapor Et
Eski 5 Temmuz 2012, 14:40

Cvp: Işık Nedir? Işık Yasaları ve Kuramları Hakkında

#4 (link)
Mavi Peri
Ziyaretçi
Mavi Peri - avatarı
Işık Nedir

Göz retinasına düştüğünde görme duyumuna yol açan elektromanyetik ışınım. Işık, elektromanyetik tayfta 400 ile 700 nanometre arasındaki dar bir bölgeyi oluşturur. Işık terimi tayfın görünür bölgesinin dışında kalan dalga boyları için de kullanılır. Görünür ışığınkinden daha büyük enerjiye sahip olanlar morötesi, daha az enerjiye sahip olanlar da kızılötesi ışık olarak adlandırılır. Beyaz ışık, görünür tayfın bir karışımıdır. Kendileri ışık saçmayan cisimler, yansıttıkları ışıkla görünürler. Hiç ışık yansıtmayan cisimler siyah görünür. Işığın yapısı fizikçiler arasında uzun yıllar tartışma konusu olmuştur. Huygens dalga kuramını getirirken, Newton, ışığın parçacıklardan oluştuğunu düşünmekteydi. Young, girişim deneyleriyle dalga varsayımını öne çıkardı. Fresnel buna matematik bir temel kazandırdı. 20. yüzyıl başlarında Planck ve Einstein'ın kara cisim ışınımı ve fotoelektrik olayı açıklamalarıyla ışığın yapısı yeniden tartışma gündemine geldi. Bu kez ışığın kuvanta (foton) hâlinde enerji taşıdığı öne sürüldü. Günümüzde fizikçiler ışığı, hem dalga (optik olaylar), hem de kuvanta (kara cisim ışınımı, fotoelektrik yayınım gibi olaylar) yaklaşımıyla ele alırlar. Yeryüzünde güneş ışığı başlıca enerji kaynağını oluşturur. Fotosentez başta olmak üzere, birçok kimyasal tepkime ışıkla gerçekleşir. Fotosel kullanılarak ışık, elektriğe dönüştürülebilir. Aydınlatmaya yönelik ışık, fotometrinin konusunu oluşturur.

MsXLabs.org & MORPA Genel Kültür Ansiklopedisi
Rapor Et
Cevap Yaz Yeni Konu Aç
Hızlı Cevap
Kullanıcı Adı:
Önce bu soruyu cevaplayın
Mesaj:








Yeni Soru
Sayfa 0.284 saniyede (83.77% PHP - 16.23% MySQL) 16 sorgu ile oluşturuldu
Şimdi ücretsiz üye olun!
Saat Dilimi: GMT +3 - Saat: 08:37
  • YASAL BİLGİ

  • İçerik sağlayıcı paylaşım sitelerinden biri olan MsXLabs.org forum adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre tüm kullanıcılarımız yaptıkları paylaşımlardan sorumludur. MsXLabs.org hakkında yapılacak tüm hukuksal şikayetler buradan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 3 (üç) iş günü içerisinde MsXLabs.org yönetimi olarak tarafımızdan gerekli işlemler yapıldıktan sonra size dönüş yapılacaktır.
  • » Site ve Forum Kuralları
  • » Gizlilik Sözleşmesi